#include #include #include #include #include #include #include #include "../mnist/include/mnist.h" #include "include/initialisation.h" #include "include/neuron_io.h" #include "../include/colors.h" #include "include/function.h" #include "include/creation.h" #include "include/update.h" #include "include/utils.h" #include "include/free.h" #include "include/jpeg.h" #include "include/cnn.h" #include "include/train.h" int div_up(int a, int b) { // Partie entière supérieure de a/b return ((a % b) != 0) ? (a / b + 1) : (a / b); } void* train_thread(void* parameters) { TrainParameters* param = (TrainParameters*)parameters; Network* network = param->network; imgRawImage* image; int maxi; int*** images = param->images; int* labels = (int*)param->labels; int* index = param->index; int width = param->width; int height = param->height; int dataset_type = param->dataset_type; int start = param->start; int nb_images = param->nb_images; float accuracy = 0.; for (int i=start; i < start+nb_images; i++) { if (dataset_type == 0) { write_image_in_network_32(images[index[i]], height, width, network->input[0][0]); forward_propagation(network); maxi = indice_max(network->input[network->size-1][0][0], 10); backward_propagation(network, labels[index[i]]); if (maxi == labels[index[i]]) { accuracy += 1.; } } else { if (!param->dataset->images[index[i]]) { image = loadJpegImageFile(param->dataset->fileNames[index[i]]); param->dataset->images[index[i]] = image->lpData; free(image); } write_image_in_network_260(param->dataset->images[index[i]], height, width, network->input[0]); forward_propagation(network); maxi = indice_max(network->input[network->size-1][0][0], param->dataset->numCategories); backward_propagation(network, param->dataset->labels[index[i]]); if (maxi == (int)param->dataset->labels[index[i]]) { accuracy += 1.; } free(param->dataset->images[index[i]]); param->dataset->images[index[i]] = NULL; } } param->accuracy = accuracy; return NULL; } void train(int dataset_type, char* images_file, char* labels_file, char* data_dir, int epochs, char* out, char* recover) { srand(time(NULL)); Network* network; int input_dim = -1; int input_depth = -1; float accuracy; float current_accuracy; int nb_images_total; // Images au total int nb_images_total_remaining; // Images restantes dans un batch int batches_epoques; // Batches par époque int*** images; // Images sous forme de tableau de tableaux de tableaux de pixels (degré de gris, MNIST) unsigned int* labels; // Labels associés aux images du dataset MNIST jpegDataset* dataset; // Structure de données décrivant un dataset d'images jpeg int* shuffle_index; // shuffle_index[i] contient le nouvel index de l'élément à l'emplacement i avant mélange double start_time, end_time; double elapsed_time; double algo_start = omp_get_wtime(); start_time = omp_get_wtime(); if (dataset_type == 0) { // Type MNIST // Chargement des images du set de données MNIST int* parameters = read_mnist_images_parameters(images_file); nb_images_total = parameters[0]; free(parameters); images = read_mnist_images(images_file); labels = read_mnist_labels(labels_file); input_dim = 32; input_depth = 1; } else { // Type JPG dataset = loadJpegDataset(data_dir); input_dim = dataset->height + 4; // image_size + padding input_depth = dataset->numComponents; nb_images_total = dataset->numImages; } // Initialisation du réseau if (!recover) { network = create_network_lenet5(0.1, 0, TANH, GLOROT, input_dim, input_depth); } else { network = read_network(recover); } shuffle_index = (int*)malloc(sizeof(int)*nb_images_total); for (int i=0; i < nb_images_total; i++) { shuffle_index[i] = i; } #ifdef USE_MULTITHREADING int nb_remaining_images; // Nombre d'images restantes à lancer pour une série de threads // Récupération du nombre de threads disponibles int nb_threads = get_nprocs(); pthread_t *tid = (pthread_t*)malloc(nb_threads * sizeof(pthread_t)); // Création des paramètres donnés à chaque thread dans le cas du multi-threading TrainParameters** train_parameters = (TrainParameters**)malloc(sizeof(TrainParameters*)*nb_threads); TrainParameters* param; for (int k=0; k < nb_threads; k++) { train_parameters[k] = (TrainParameters*)malloc(sizeof(TrainParameters)); param = train_parameters[k]; param->dataset_type = dataset_type; if (dataset_type == 0) { param->images = images; param->labels = labels; param->dataset = NULL; param->width = 28; param->height = 28; } else { param->dataset = dataset; param->width = dataset->width; param->height = dataset->height; param->images = NULL; param->labels = NULL; } param->nb_images = BATCHES / nb_threads; param->index = shuffle_index; } #else // Création des paramètres donnés à l'unique // thread dans l'hypothèse ou le multi-threading n'est pas utilisé. // Cela est utile à des fins de débogage notamment, // où l'utilisation de threads rend vite les choses plus compliquées qu'elles ne le sont. TrainParameters* train_params = (TrainParameters*)malloc(sizeof(TrainParameters)); train_params->network = network; train_params->dataset_type = dataset_type; if (dataset_type == 0) { train_params->images = images; train_params->labels = labels; train_params->width = 28; train_params->height = 28; train_params->dataset = NULL; } else { train_params->dataset = dataset; train_params->width = dataset->width; train_params->height = dataset->height; train_params->images = NULL; train_params->labels = NULL; } train_params->nb_images = BATCHES; train_params->index = shuffle_index; #endif end_time = omp_get_wtime(); elapsed_time = end_time - start_time; printf("Initialisation: %0.2lf s\n\n", elapsed_time); for (int i=0; i < epochs; i++) { start_time = omp_get_wtime(); // La variable accuracy permet d'avoir une ESTIMATION // du taux de réussite et de l'entraînement du réseau, // mais n'est en aucun cas une valeur réelle dans le cas // du multi-threading car chaque copie du réseau initiale sera légèrement différente // et donnera donc des résultats différents sur les mêmes images. accuracy = 0.; knuth_shuffle(shuffle_index, nb_images_total); batches_epoques = div_up(nb_images_total, BATCHES); nb_images_total_remaining = nb_images_total; #ifndef USE_MULTITHREADING train_params->nb_images = BATCHES; #endif for (int j=0; j < batches_epoques; j++) { #ifdef USE_MULTITHREADING if (j == batches_epoques-1) { nb_remaining_images = nb_images_total_remaining; nb_images_total_remaining = 0; } else { nb_images_total_remaining -= BATCHES; nb_remaining_images = BATCHES; } for (int k=0; k < nb_threads; k++) { if (k == nb_threads-1) { train_parameters[k]->nb_images = nb_remaining_images; nb_remaining_images = 0; } else { nb_remaining_images -= BATCHES / nb_threads; } train_parameters[k]->start = BATCHES*j + (BATCHES/nb_threads)*k; if (train_parameters[k]->start+train_parameters[k]->nb_images >= nb_images_total) { train_parameters[k]->nb_images = nb_images_total - train_parameters[k]->start -1; } if (train_parameters[k]->nb_images > 0) { train_parameters[k]->network = copy_network(network); pthread_create( &tid[k], NULL, train_thread, (void*) train_parameters[k]); } else { train_parameters[k]->network = NULL; } } for (int k=0; k < nb_threads; k++) { // On attend la terminaison de chaque thread un à un if (train_parameters[k]->network) { pthread_join( tid[k], NULL ); accuracy += train_parameters[k]->accuracy / (float) nb_images_total; } } // On attend que tous les fils aient fini avant d'appliquer des modifications au réseau principal for (int k=0; k < nb_threads; k++) { if (train_parameters[k]->network) { // Si le fil a été utilisé update_weights(network, train_parameters[k]->network, train_parameters[k]->nb_images); update_bias(network, train_parameters[k]->network, train_parameters[k]->nb_images); free_network(train_parameters[k]->network); } } current_accuracy = accuracy * nb_images_total/((j+1)*BATCHES); printf("\rThreads [%d]\tÉpoque [%d/%d]\tImage [%d/%d]\tAccuracy: "YELLOW"%0.2f%%"RESET" ", nb_threads, i, epochs, BATCHES*(j+1), nb_images_total, current_accuracy*100); fflush(stdout); #else (void)nb_images_total_remaining; // Juste pour enlever un warning train_params->start = j*BATCHES; // Ne pas dépasser le nombre d'images à cause de la partie entière if (j == batches_epoques-1) { train_params->nb_images = nb_images_total - j*BATCHES; } train_thread((void*)train_params); accuracy += train_params->accuracy / (float) nb_images_total; current_accuracy = accuracy * nb_images_total/((j+1)*BATCHES); update_weights(network, network, train_params->nb_images); update_bias(network, network, train_params->nb_images); printf("\rÉpoque [%d/%d]\tImage [%d/%d]\tAccuracy: "YELLOW"%0.4f%%"RESET" ", i, epochs, BATCHES*(j+1), nb_images_total, current_accuracy*100); fflush(stdout); #endif } end_time = omp_get_wtime(); elapsed_time = end_time - start_time; #ifdef USE_MULTITHREADING printf("\rThreads [%d]\tÉpoque [%d/%d]\tImage [%d/%d]\tAccuracy: "GREEN"%0.4f%%"RESET"\tTemps: %0.2f s\n", nb_threads, i, epochs, nb_images_total, nb_images_total, accuracy*100, elapsed_time); #else printf("\rÉpoque [%d/%d]\tImage [%d/%d]\tAccuracy: "GREEN"%0.4f%%"RESET"\tTemps: %0.2f s\n", i, epochs, nb_images_total, nb_images_total, accuracy*100, elapsed_time); #endif write_network(out, network); } free(shuffle_index); free_network(network); #ifdef USE_MULTITHREADING free(tid); #else free(train_params); #endif if (dataset_type == 0) { for (int i=0; i < nb_images_total; i++) { for (int j=0; j < 28; j++) { free(images[i][j]); } free(images[i]); } free(images); free(labels); } else { free_dataset(dataset); } end_time = omp_get_wtime(); elapsed_time = end_time - algo_start; printf("\nTemps total: %0.1f s\n", elapsed_time); }