#include #include #include #include #include #include #include "neural_network.c" #include "neuron_io.c" #include "mnist.c" #define EPOCHS 10 #define BATCHES 100 #ifdef __CUDACC__ # include "cuda_utils.cu" # define MAX_CUDA_THREADS 1024 // from NVIDIA documentation #endif typedef struct TrainParameters { Network* network; int*** images; int* labels; int start; int nb_images; int height; int width; float accuracy; } TrainParameters; void print_image(unsigned int width, unsigned int height, int** image, float* previsions) { char tab[] = {' ', '.', ':', '%', '#', '\0'}; for (int i=0; i < (int)height; i++) { for (int j=0; j < (int)width; j++) { printf("%c", tab[image[i][j]/52]); } if (i < 10) { printf("\t%d : %f", i, previsions[i]); } printf("\n"); } } int indice_max(float* tab, int n) { int indice = -1; float maxi = FLT_MIN; for (int i=0; i < n; i++) { if (tab[i] > maxi) { maxi = tab[i]; indice = i; } } return indice; } void help(char* call) { printf("Usage: %s ( train | recognize | test ) [OPTIONS]\n\n", call); printf("OPTIONS:\n"); printf("\ttrain:\n"); printf("\t\t--epochs | -e [int]\tNombre d'époques (itérations sur tout le set de données).\n"); printf("\t\t--couches | -c [int]\tNombres de couches.\n"); printf("\t\t--neurones | -n [int]\tNombre de neurones sur la première couche.\n"); printf("\t\t--recover | -r [FILENAME]\tRécupérer depuis un modèle existant.\n"); printf("\t\t--images | -i [FILENAME]\tFichier contenant les images.\n"); printf("\t\t--labels | -l [FILENAME]\tFichier contenant les labels.\n"); printf("\t\t--out | -o [FILENAME]\tFichier où écrire le réseau de neurones.\n"); printf("\t\t--delta | -d [FILENAME]\tFichier où écrire le réseau différentiel.\n"); printf("\t\t--nb-images | -N [int]\tNombres d'images à traiter.\n"); printf("\t\t--start | -s [int]\tPremière image à traiter.\n"); printf("\trecognize:\n"); printf("\t\t--modele | -m [FILENAME]\tFichier contenant le réseau de neurones.\n"); printf("\t\t--in | -i [FILENAME]\tFichier contenant les images à reconnaître.\n"); printf("\t\t--out | -o (text|json)\tFormat de sortie.\n"); printf("\ttest:\n"); printf("\t\t--images | -i [FILENAME]\tFichier contenant les images.\n"); printf("\t\t--labels | -l [FILENAME]\tFichier contenant les labels.\n"); printf("\t\t--modele | -m [FILENAME]\tFichier contenant le réseau de neurones.\n"); printf("\t\t--preview-fails | -p\tAfficher les images ayant échoué.\n"); } void write_image_in_network(int** image, Network* network, int height, int width) { for (int i=0; i < height; i++) { for (int j=0; j < width; j++) { network->layers[0]->neurons[i*height+j]->z = (float)image[i][j] / 255.0f; } } } void* train_images(void* parameters) { TrainParameters* param = (TrainParameters*)parameters; Network* network = param->network; Layer* last_layer = network->layers[network->nb_layers-1]; int nb_neurons_last_layer = last_layer->nb_neurons; int*** images = param->images; int* labels = param->labels; int start = param->start; int nb_images = param->nb_images; int height = param->height; int width = param->width; float accuracy = 0.; float* sortie = (float*)malloc(sizeof(float)*nb_neurons_last_layer); int* desired_output; for (int i=start; i < start+nb_images; i++) { write_image_in_network(images[i], network, height, width); desired_output = desired_output_creation(network, labels[i]); forward_propagation(network); backward_propagation(network, desired_output); for (int k=0; k < nb_neurons_last_layer; k++) { sortie[k] = last_layer->neurons[k]->z; } if (indice_max(sortie, nb_neurons_last_layer) == labels[i]) { accuracy += 1.; } free(desired_output); } free(sortie); param->accuracy = accuracy; return NULL; } void train(int epochs, int layers, int neurons, char* recovery, char* image_file, char* label_file, char* out, char* delta, int nb_images_to_process, int start) { // Entraînement du réseau sur le set de données MNIST Network* network; Network* delta_network; //int* repartition = malloc(sizeof(int)*layers); int nb_neurons_last_layer = 10; int repartition[2] = {neurons, nb_neurons_last_layer}; float accuracy; #ifdef __CUDACC__ printf("Utilisation du GPU\n"); int nb_threads = MAX_CUDA_THREADS; #else printf("Pas d'utilisation du GPU\n"); int nb_threads = get_nprocs(); pthread_t *tid = (pthread_t *)malloc(nb_threads * sizeof(pthread_t)); #endif /* * On repart d'un réseau déjà créée stocké dans un fichier * ou on repart de zéro si aucune backup n'est fournie * */ if (! recovery) { network = (Network*)malloc(sizeof(Network)); network_creation(network, repartition, layers); network_initialisation(network); } else { network = read_network(recovery); printf("Backup restaurée.\n"); } if (delta != NULL) { // On initialise un réseau complet mais la seule partie qui nous intéresse est la partie différentielle delta_network = (Network*)malloc(sizeof(Network)); int* repart = (int*)malloc(sizeof(network->nb_layers)); for (int i=0; i < network->nb_layers; i++) { repart[i] = network->layers[i]->nb_neurons; } network_creation(delta_network, repart, network->nb_layers); network_initialisation(delta_network); free(repart); } // Chargement des images du set de données MNIST int* parameters = read_mnist_images_parameters(image_file); int nb_images_total = parameters[0]; int nb_remaining_images = 0; // Nombre d'images restantes dans un batch int height = parameters[1]; int width = parameters[2]; int*** images = read_mnist_images(image_file); unsigned int* labels = read_mnist_labels(label_file); #ifdef __CUDACC__ int*** images_cuda = copy_images_cuda(images, nb_images_total, width, height); unsigned int* labels_cuda = copy_labels_cuda(labels); #endif if (nb_images_to_process != -1) { nb_images_total = nb_images_to_process; } TrainParameters** train_parameters = (TrainParameters**)malloc(sizeof(TrainParameters*)*nb_threads); for (int i=0; i < epochs; i++) { accuracy = 0.; for (int k=0; k < nb_images_total / BATCHES; k++) { nb_remaining_images = BATCHES; for (int j=0; j < nb_threads; j++) { train_parameters[j] = (TrainParameters*)malloc(sizeof(TrainParameters)); train_parameters[j]->network = copy_network(network); train_parameters[j]->images = (int***)images; train_parameters[j]->labels = (int*)labels; train_parameters[j]->nb_images = BATCHES / nb_threads; train_parameters[j]->start = nb_images_total - BATCHES*(nb_images_total / BATCHES - k -1) - nb_remaining_images + start; train_parameters[j]->height = height; train_parameters[j]->width = width; if (j == nb_threads-1) { train_parameters[j]->nb_images = nb_remaining_images; } nb_remaining_images -= train_parameters[j]->nb_images; #ifdef __CUDACC__ // Création des threads sur le GPU #else // Création des threads sur le CPU pthread_create( &tid[j], NULL, train_images, (void*) train_parameters[j]); #endif } for(int j=0; j < nb_threads; j++ ) { #ifdef __CUDACC__ // On join les threads créés sur le GPU #else // On join les threads créés sur le CPU pthread_join( tid[j], NULL ); #endif accuracy += train_parameters[j]->accuracy / (float) nb_images_total; if (delta != NULL) patch_delta(delta_network, train_parameters[j]->network, train_parameters[j]->nb_images); patch_network(network, train_parameters[j]->network, train_parameters[j]->nb_images); deletion_of_network(train_parameters[j]->network); free(train_parameters[j]); } printf("\rThread [%d/%d]\tÉpoque [%d/%d]\tImage [%d/%d]\tAccuracy: %0.1f%%", nb_threads, nb_threads, i, epochs, BATCHES*(k+1), nb_images_total, accuracy*100); } printf("\rThread [%d/%d]\tÉpoque [%d/%d]\tImage [%d/%d]\tAccuracy: %0.1f%%\n", nb_threads, nb_threads, i, epochs, nb_images_total, nb_images_total, accuracy*100); write_network(out, network); if (delta != NULL) write_delta_network(delta, delta_network); } write_network(out, network); if (delta != NULL) { deletion_of_network(delta_network); } deletion_of_network(network); free(train_parameters); #ifdef __CUDACC__ // On libère les espaces mémoires utilisés sur le GPU #else // On libère les espaces mémoire utilisés spécialement sur le CPU free(tid); #endif } float** recognize(char* modele, char* entree) { Network* network = read_network(modele); Layer* last_layer = network->layers[network->nb_layers-1]; int* parameters = read_mnist_images_parameters(entree); int nb_images = parameters[0]; int height = parameters[1]; int width = parameters[2]; int*** images = read_mnist_images(entree); float** results = (float**)malloc(sizeof(float*)*nb_images); for (int i=0; i < nb_images; i++) { results[i] = (float*)malloc(sizeof(float)*last_layer->nb_neurons); write_image_in_network(images[i], network, height, width); forward_propagation(network); for (int j=0; j < last_layer->nb_neurons; j++) { results[i][j] = last_layer->neurons[j]->z; } } deletion_of_network(network); free(parameters); return results; } void print_recognize(char* modele, char* entree, char* sortie) { Network* network = read_network(modele); int nb_last_layer = network->layers[network->nb_layers-1]->nb_neurons; deletion_of_network(network); int* parameters = read_mnist_images_parameters(entree); int nb_images = parameters[0]; float** results = recognize(modele, entree); if (! strcmp(sortie, "json")) { printf("{\n"); } for (int i=0; i < nb_images; i++) { if (! strcmp(sortie, "text")) printf("Image %d\n", i); else printf("\"%d\" : [", i); for (int j=0; j < nb_last_layer; j++) { if (! strcmp(sortie, "json")) { printf("%f", results[i][j]); if (j+1 < nb_last_layer) { printf(", "); } } else printf("Probabilité %d: %f\n", j, results[i][j]); } free(results[i]); if (! strcmp(sortie, "json")) { if (i+1 < nb_images) { printf("],\n"); } else { printf("]\n"); } } } free(results); free(parameters); if (! strcmp(sortie, "json")) { printf("}\n"); } } void test(char* modele, char* fichier_images, char* fichier_labels, bool preview_fails) { Network* network = read_network(modele); int nb_last_layer = network->layers[network->nb_layers-1]->nb_neurons; deletion_of_network(network); int* parameters = read_mnist_images_parameters(fichier_images); int nb_images = parameters[0]; int width = parameters[1]; int height = parameters[2]; int*** images = read_mnist_images(fichier_images); float** results = recognize(modele, fichier_images); unsigned int* labels = read_mnist_labels(fichier_labels); float accuracy = 0.; for (int i=0; i < nb_images; i++) { if (indice_max(results[i], nb_last_layer) == (int)labels[i]) { accuracy += 1. / (float)nb_images; } else if (preview_fails) { printf("--- Image %d, %d --- Prévision: %d ---\n", i, labels[i], indice_max(results[i], nb_last_layer)); print_image(width, height, images[i], results[i]); } free(results[i]); } printf("%d Images\tAccuracy: %0.1f%%\n", nb_images, accuracy*100); free(parameters); free(results); } int main(int argc, char* argv[]) { if (argc < 2) { printf("Pas d'action spécifiée\n"); help(argv[0]); exit(1); } if (! strcmp(argv[1], "train")) { int epochs = EPOCHS; int layers = 2; int neurons = 784; int nb_images = -1; int start = 0; char* images = NULL; char* labels = NULL; char* recovery = NULL; char* out = NULL; char* delta = NULL; int i = 2; while (i < argc) { // Utiliser un switch serait sans doute plus élégant if ((! strcmp(argv[i], "--epochs"))||(! strcmp(argv[i], "-e"))) { epochs = strtol(argv[i+1], NULL, 10); i += 2; } else if ((! strcmp(argv[i], "--couches"))||(! strcmp(argv[i], "-c"))) { layers = strtol(argv[i+1], NULL, 10); i += 2; } else if ((! strcmp(argv[i], "--neurones"))||(! strcmp(argv[i], "-n"))) { neurons = strtol(argv[i+1], NULL, 10); i += 2; } else if ((! strcmp(argv[i], "--images"))||(! strcmp(argv[i], "-i"))) { images = argv[i+1]; i += 2; } else if ((! strcmp(argv[i], "--labels"))||(! strcmp(argv[i], "-l"))) { labels = argv[i+1]; i += 2; } else if ((! strcmp(argv[i], "--recover"))||(! strcmp(argv[i], "-r"))) { recovery = argv[i+1]; i += 2; } else if ((! strcmp(argv[i], "--out"))||(! strcmp(argv[i], "-o"))) { out = argv[i+1]; i += 2; } else if ((! strcmp(argv[i], "--delta"))||(! strcmp(argv[i], "-d"))) { delta = argv[i+1]; i += 2; } else if ((! strcmp(argv[i], "--nb-images"))||(! strcmp(argv[i], "-N"))) { nb_images = strtol(argv[i+1], NULL, 10); i += 2; } else if ((! strcmp(argv[i], "--start"))||(! strcmp(argv[i], "-s"))) { start = strtol(argv[i+1], NULL, 10); i += 2; } else { printf("%s : Argument non reconnu\n", argv[i]); i++; } } if (! images) { printf("Pas de fichier d'images spécifié\n"); exit(1); } if (! labels) { printf("Pas de fichier de labels spécifié\n"); exit(1); } if (! out) { printf("Pas de fichier de sortie spécifié, default: out.bin\n"); out = "out.bin"; } // Entraînement en sourçant neural_network.c train(epochs, layers, neurons, recovery, images, labels, out, delta, nb_images, start); exit(0); } if (! strcmp(argv[1], "recognize")) { char* in = NULL; char* modele = NULL; char* out = NULL; int i = 2; while(i < argc) { if ((! strcmp(argv[i], "--in"))||(! strcmp(argv[i], "-i"))) { in = argv[i+1]; i += 2; } else if ((! strcmp(argv[i], "--modele"))||(! strcmp(argv[i], "-m"))) { modele = argv[i+1]; i += 2; } else if ((! strcmp(argv[i], "--out"))||(! strcmp(argv[i], "-o"))) { out = argv[i+1]; i += 2; } else { printf("%s : Argument non reconnu\n", argv[i]); i++; } } if (! in) { printf("Pas d'entrée spécifiée\n"); exit(1); } if (! modele) { printf("Pas de modèle spécifié\n"); exit(1); } if (! out) { out = "text"; } print_recognize(modele, in, out); // Reconnaissance puis affichage des données sous le format spécifié exit(0); } if (! strcmp(argv[1], "test")) { char* modele = NULL; char* images = NULL; char* labels = NULL; bool preview_fails = false; int i = 2; while (i < argc) { if ((! strcmp(argv[i], "--images"))||(! strcmp(argv[i], "-i"))) { images = argv[i+1]; i += 2; } else if ((! strcmp(argv[i], "--labels"))||(! strcmp(argv[i], "-l"))) { labels = argv[i+1]; i += 2; } else if ((! strcmp(argv[i], "--modele"))||(! strcmp(argv[i], "-m"))) { modele = argv[i+1]; i += 2; } else if ((! strcmp(argv[i], "--preview-fails"))||(! strcmp(argv[i], "-p"))) { preview_fails = true; i++; } } test(modele, images, labels, preview_fails); exit(0); } printf("Option choisie non reconnue: %s\n", argv[1]); help(argv[0]); return 1; }