#include #include #include #include "include/backpropagation.h" #include "../common/include/colors.h" #include "../common/include/utils.h" #include "include/struct.h" #include "include/config.h" /* * Softmax backward MSE */ #ifdef __CUDACC__ __global__ void softmax_backward_mse_kernel(float* input, float* output, int size) { int idx = threadIdx.x + blockDim.x*blockIdx.x; if (idx >= size) { return; } int input_val = input[idx]; int output_val = output[idx]; input[idx] = (output_val-input_val)*input_val*(1-input_val); } void softmax_backward_mse_device(float* input, float* output, int size) { // Make computation dim3 gridSize(i_div_up(size, BLOCKSIZE_x)); dim3 blockSize(BLOCKSIZE_x); softmax_backward_mse_kernel<<>>(input, output, size); gpuErrchk( cudaPeekAtLastError() ); gpuErrchk( cudaDeviceSynchronize() ); } #endif void softmax_backward_mse_cpu(float* input, float* output, int size) { /* Input et output ont la même taille */ for (int i=0; i < size; i++){ input[i] = (output[i]-input[i])*input[i]*(1-input[i]); } } void softmax_backward_mse(float* input, float* output, int size) { #ifdef __CUDACC__ softmax_backward_mse_device(input, output, size); #else softmax_backward_mse_cpu(input, output, size); #endif } /* * Softmax backward Cross entropy */ #ifdef __CUDACC__ __global__ void softmax_backward_cross_entropy_kernel(float* input, float* output, int size) { int idx = threadIdx.x + blockDim.x*blockIdx.x; if (idx >= size) { return; } input[idx] = output[idx] - input[idx]; } void softmax_backward_cross_entropy_device(float* input, float* output, int size) { // Make computation dim3 gridSize(i_div_up(size, BLOCKSIZE_x)); dim3 blockSize(BLOCKSIZE_x); softmax_backward_cross_entropy_kernel<<>>(input, output, size); gpuErrchk( cudaPeekAtLastError() ); gpuErrchk( cudaDeviceSynchronize() ); } #endif void softmax_backward_cross_entropy_cpu(float* input, float* output, int size) { /* Input et output ont la même taille */ for (int i=0; i < size; i++){ input[i] = output[i] - input[i]; } } void softmax_backward_cross_entropy(float* input, float* output, int size) { #ifdef __CUDACC__ softmax_backward_cross_entropy_device(input, output, size); #else softmax_backward_cross_entropy_cpu(input, output, size); #endif } /* * Backward average pooling */ #ifdef __CUDACC__ __global__ void backward_average_pooling_kernel(float*** input, float*** output, int input_width, int output_width, int depth, int kernel_size, int stride, int padding) { // Équivalents respectifs de i, j et k dans la boucle effectuée par le cpu int idx = threadIdx.x + blockDim.x*blockIdx.x; // < depth int idy = threadIdx.y + blockDim.y*blockIdx.y; // < output_width int idz = threadIdx.z + blockDim.z*blockIdx.z; // < output_width if (idx >= depth || idy >= output_width || idz >= output_width) { return; } int max_move = kernel_size - padding; for (int a=-padding; a < max_move; a++) { for (int b=-padding; b < max_move; b++) { int idy_2 = stride*idy +a; int idz_2 = stride*idz +b; if (NOT_OUTSIDE(idy_2, idz_2, 0, input_width)) { int y = min(idy_2+1, min(kernel_size, input_width - idy_2)); int z = min(idz_2+1, min(kernel_size, input_width - idz_2)); input[idx][idy_2][idz_2] += output[idx][idy][idz]/(y*z); } } } } void backward_average_pooling_device(float*** input, float*** output, int input_width, int output_width, int depth, int kernel_size, int stride, int padding) { // Make computation dim3 gridSize(i_div_up(depth, BLOCKSIZE_x), i_div_up(output_width, BLOCKSIZE_y), i_div_up(output_width, BLOCKSIZE_z)); dim3 blockSize(BLOCKSIZE_x, BLOCKSIZE_y, BLOCKSIZE_z); reset_3d_array(input, depth, input_width, input_width); backward_average_pooling_kernel<<>>(input, output, input_width, output_width, depth, kernel_size, stride, padding); gpuErrchk( cudaPeekAtLastError() ); gpuErrchk( cudaDeviceSynchronize() ); } #endif void backward_average_pooling_cpu(float*** input, float*** output, int input_width, int output_width, int depth, int kernel_size, int stride, int padding) { /* Input et output ont la même profondeur (depth) */ reset_3d_array(input, depth, input_width, input_width); int max_move = kernel_size - padding; for (int i=0; i < depth; i++) { for (int j=0; j < output_width; j++) { for (int k=0; k < output_width; k++) { for (int a=-padding; a < max_move; a++) { for (int b=-padding; b < max_move; b++) { int j_2 = stride*j +a; int k_2 = stride*k + b; if (NOT_OUTSIDE(j_2, k_2, 0, input_width)){ int j_3 = min(j_2+1, min(kernel_size, input_width - j_2)); int k_3 = min(k_2+1, min(kernel_size, input_width - k_2)); input[i][j_2][k_2] += output[i][j][k]/(j_3*k_3); } } } } } } } #ifdef __CUDACC__ extern "C" #endif void backward_average_pooling(float*** input, float*** output, int input_width, int output_width, int depth, int kernel_size, int stride, int padding) { #ifndef __CUDACC__ backward_average_pooling_cpu(input, output, input_width, output_width, depth, kernel_size, stride, padding); #else backward_average_pooling_device(input, output, input_width, output_width, depth, kernel_size, stride, padding); #endif } /* * Backward max pooling */ #ifdef __CUDACC__ __global__ void backward_max_pooling_kernel(float*** input, float*** output, int input_width, int output_width, int depth, int kernel_size, int stride, int padding) { // Équivalents respectifs de i, j et k dans la boucle effectuée par le cpu int idx = threadIdx.x + blockDim.x*blockIdx.x; // < depth int idy = threadIdx.y + blockDim.y*blockIdx.y; // < output_width int idz = threadIdx.z + blockDim.z*blockIdx.z; // < output_width if (idx >= depth || idy >= output_width || idz >= output_width) { return; } int max_move = kernel_size - padding; float m = -FLT_MAX; int a_max = -1; int b_max = -1; int cpt = 0; for (int a=-padding; a < max_move; a++) { for (int b=-padding; b < max_move; b++) { int idy_2 = stride*idy +a; int idz_2 = stride*idz +b; if (NOT_OUTSIDE(idy_2, idz_2, 0, input_width)) { if (input[idx][idy_2][idz_2] > m) { m = input[idx][idy_2][idz_2]; a_max = a; b_max = b; } input[idx][idy_2][idz_2] = 0; cpt++; } } } if (cpt==0) { printf(RED "[ERROR]" RESET " Dimensions ou stride ou padding erroné dans 'backward_max_pooling_cpu'\n"); } input[idx][stride*idy +a_max][stride*idz +b_max] = output[idx][idy][idz]/cpt; } void backward_max_pooling_device(float*** input, float*** output, int input_width, int output_width, int depth, int kernel_size, int stride, int padding) { // Make computation dim3 gridSize(i_div_up(depth, BLOCKSIZE_x), i_div_up(output_width, BLOCKSIZE_y), i_div_up(output_width, BLOCKSIZE_z)); dim3 blockSize(BLOCKSIZE_x, BLOCKSIZE_y, BLOCKSIZE_z); backward_max_pooling_kernel<<>>(input, output, input_width, output_width, depth, kernel_size, stride, padding); gpuErrchk( cudaPeekAtLastError() ); gpuErrchk( cudaDeviceSynchronize() ); } #endif void backward_max_pooling_cpu(float*** input, float*** output, int input_width, int output_width, int depth, int kernel_size, int stride, int padding) { float m; // Maximum int a_max, b_max; // Indices du maximum int cpt; int max_move = kernel_size - padding; for (int i=0; i < depth; i++) { for (int j=0; j < output_width; j++) { for (int k=0; k < output_width; k++) { m = -FLT_MAX; a_max = -1; b_max = -1; cpt = 0; for (int a=-padding; a < max_move; a++) { for (int b=-padding; b < max_move; b++) { int j_2 = stride*j +a; int k_2 = stride*k +b; if (NOT_OUTSIDE(j_2, k_2, 0, input_width)) { if (input[i][j_2][k_2] > m) { m = input[i][j_2][k_2]; a_max = a; b_max = b; } input[i][j_2][k_2] = 0; cpt++; } } } if (cpt==0) { printf_error((char*)"Dimensions ou stride ou padding erroné dans 'backward_max_pooling_cpu'\n"); } else { input[i][stride*j +a_max][stride*k +b_max] = output[i][j][k]/cpt; } } } } } #ifdef __CUDACC__ extern "C" #endif void backward_max_pooling(float*** input, float*** output, int input_width, int output_width, int depth, int kernel_size, int stride, int padding) { #ifndef __CUDACC__ backward_max_pooling_cpu(input, output, input_width, output_width, depth, kernel_size, stride, padding); #else backward_max_pooling_device(input, output, input_width, output_width, kernel_size, depth, stride, padding); #endif } /* * Backward Dense */ #ifdef __CUDACC__ __global__ void backward_dense_kernel_1(float** d_weights, float* d_bias, float* input, float* output, int size_input, int size_output) { // Équivalents respectifs de i, j et k dans la boucle effectuée par le cpu int idx = threadIdx.x + blockDim.x*blockIdx.x; // < size_input int idy = threadIdx.y + blockDim.y*blockIdx.y; // < size_output if (idx >= size_input || idy >= size_output) { return; } if (idx == 0) { d_bias[idy] += output[idy]; } d_weights[idx][idy] += input[idx]*output[idy]; } __global__ void backward_dense_kernel_2(float** weights, float* input, float* input_z, float* output, int size_input, int size_output, funcPtr d_f) { int idx = threadIdx.x + blockDim.x*blockIdx.x; // < size_input if (idx >= size_input) { return; } float tmp=0; for (int j=0; j < size_output; j++) { tmp += output[j]*weights[idx][j]; } input[idx] = tmp*( (*d_f)(input_z[idx]) ); } void backward_dense_device(Kernel_nn* ker, float* input, float* input_z, float* output, int size_input, int size_output, int activation, int is_first) { // Make computation dim3 gridSize1(i_div_up(size_input, BLOCKSIZE_x), i_div_up(size_output, BLOCKSIZE_y)); dim3 blockSize1(BLOCKSIZE_x, BLOCKSIZE_y); backward_dense_kernel_1<<>>(ker->d_weights, ker->d_bias, input, output, size_input, size_output); gpuErrchk( cudaPeekAtLastError() ); gpuErrchk( cudaDeviceSynchronize() ); // Second kernel if (is_first != 1) { dim3 gridSize1(i_div_up(size_input, BLOCKSIZE_x)); dim3 blockSize1(BLOCKSIZE_x); funcPtr d_function = get_activation_function_cuda(activation); backward_dense_kernel_2<<>>(ker->weights, input, input_z, output, size_input, size_output, d_function); gpuErrchk( cudaPeekAtLastError() ); gpuErrchk( cudaDeviceSynchronize() ); } } #endif void backward_dense_cpu(Kernel_nn* ker, float* input, float* input_z, float* output, int size_input, int size_output, int activation, int is_first) { funcPtr d_function = get_activation_function(activation); // Bias for (int j=0; j < size_output; j++) { ker->d_bias[j] += output[j]; } // Weights for (int i=0; i < size_input; i++) { for (int j=0; j < size_output; j++) { ker->d_weights[i][j] += input[i]*output[j]; } } // Input if (is_first==1) {// Pas besoin de backpropager dans l'input return; } for (int i=0; i < size_input; i++) { float tmp=0; for (int j=0; j < size_output; j++) { tmp += output[j]*ker->weights[i][j]; } input[i] = tmp*d_function(input_z[i]); } } #ifdef __CUDACC__ extern "C" #endif void backward_dense(Kernel_nn* ker, float* input, float* input_z, float* output, int size_input, int size_output, int activation, int is_first) { #ifndef __CUDACC__ backward_dense_cpu(ker, input, input_z, output, size_input, size_output, activation, is_first); #else backward_dense_device(ker, input, input_z, output, size_input, size_output, activation, is_first); #endif } /* * Backward linearisation */ #ifdef __CUDACC__ __global__ void backward_linearisation_kernel_1(float** d_weights, float* d_bias, float*** input, float* output, int input_depth, int input_width, int size_output) { int idx = threadIdx.x + blockDim.x*blockIdx.x; // < input_depth int idy = threadIdx.y + blockDim.y*blockIdx.y; // < input_width int idz = threadIdx.z + blockDim.z*blockIdx.z; // < input_width if (idx >= input_depth || idy >= input_width || idz >= input_width) { return; } int id = idx*input_width*input_width + idy*input_width + idz; for (int j=0; j < size_output; j++) { d_weights[id][j] += input[idx][idy][idz]*output[j]; } if (id == 0) { for (int j=0; j < size_output; j++) { d_bias[j] += output[j]; } } } __global__ void backward_linearisation_kernel_2(float** weights, float*** input, float*** input_z, float* output, int input_depth, int input_width, int size_output, funcPtr d_f) { int idx = threadIdx.x + blockDim.x*blockIdx.x; // < input_depth int idy = threadIdx.y + blockDim.y*blockIdx.y; // < input_width int idz = threadIdx.z + blockDim.z*blockIdx.z; // < input_width if (idx >= input_depth || idy >= input_width || idz >= input_width) { return; } int id = (idx*input_width+idy)*input_width + idz; float tmp=0; for (int j=0; j < size_output; j++) { tmp += output[j]*weights[id][j]; } input[idx][idy][idz] = tmp*( (*d_f)(input_z[idx][idy][idz]) ); } void backward_linearisation_device(Kernel_nn* ker, float*** input, float*** input_z, float* output, int input_depth, int input_width, int size_output, int activation) { // Make computation dim3 gridSize(i_div_up(input_depth, BLOCKSIZE_x), i_div_up(input_width, BLOCKSIZE_y), i_div_up(input_width, BLOCKSIZE_y)); dim3 blockSize(BLOCKSIZE_x, BLOCKSIZE_y, BLOCKSIZE_z); backward_linearisation_kernel_1<<>>(ker->d_weights, ker->d_bias, input, output, input_depth, input_width, size_output); gpuErrchk( cudaPeekAtLastError() ); gpuErrchk( cudaDeviceSynchronize() ); // Second kernel funcPtr d_function = get_activation_function_cuda(activation); backward_linearisation_kernel_2<<>>(ker->weights, input, input_z, output, input_depth, input_width, size_output, d_function); gpuErrchk( cudaPeekAtLastError() ); gpuErrchk( cudaDeviceSynchronize() ); } #endif void backward_linearisation_cpu(Kernel_nn* ker, float*** input, float*** input_z, float* output, int input_depth, int input_width, int size_output, int activation) { funcPtr d_function = get_activation_function(activation); // Bias for (int j=0; j < size_output; j++) { ker->d_bias[j] += output[j]; } // Weights int cpt = 0; for (int i=0; i < input_depth; i++) { for (int k=0; k < input_width; k++) { for (int l=0; l < input_width; l++) { for (int j=0; j < size_output; j++) { ker->d_weights[cpt][j] += input[i][k][l]*output[j]; } cpt++; } } } // Input cpt = 0; for (int i=0; i < input_depth; i++) { for (int k=0; k < input_width; k++) { for (int l=0; l < input_width; l++) { float tmp=0; for (int j=0; j < size_output; j++) { tmp += output[j]*ker->weights[cpt][j]; } input[i][k][l] = tmp*d_function(input_z[i][k][l]); cpt++; } } } } #ifdef __CUDACC__ extern "C" #endif void backward_linearisation(Kernel_nn* ker, float*** input, float*** input_z, float* output, int input_depth, int input_width, int size_output, int activation) { #ifndef __CUDACC__ backward_linearisation_cpu(ker, input, input_z, output, input_depth, input_width, size_output, activation); #else backward_linearisation_device(ker, input, input_z, output, input_depth, input_width, size_output, activation); #endif } /* * Backward convolution */ #ifdef __CUDACC__ __global__ void backward_convolution_dbias_kernel(float*** d_bias, float*** output, int output_depth, int output_width) { int idx = threadIdx.x + blockDim.x*blockIdx.x; int idy = threadIdx.y + blockDim.y*blockIdx.y; int idz = threadIdx.z + blockDim.z*blockIdx.z; if (idx >= output_depth || idy >= output_width || idz >= output_width) { return; } d_bias[idx][idy][idz] += output[idx][idy][idz]; } __global__ void backward_convolution_dweight_kernel(float**** d_weights, float*** input, float*** output, int input_depth, int output_depth, int input_width, int output_width, int k_size, int stride, int padding) { /* * L'ordre des boucles a été changé par rapport à l'implémentation sur CPU * afin d'utiliser possiblement plus de coeurs à la fois (car en général, depth << width) * En gardant les indices des boucles sur CPU notées h,i,j,k,l,m; on fait donc l,m,i,h,j,k */ int idx = threadIdx.x + blockDim.x*blockIdx.x; // l int idy = threadIdx.y + blockDim.y*blockIdx.y; // m int idz = threadIdx.z + blockDim.z*blockIdx.z; // i if (idx >= output_width || idy >= output_width || idz >= output_depth) { return; } int max_move = k_size - padding; for (int h=0; h < input_depth; h++) { for (int j=-padding; j < max_move; j++) { for (int k=-padding; k < max_move; k++) { if (NOT_OUTSIDE(idx*stride+j, idy*stride+k, 0, input_width)) { atomicAdd(&d_weights[h][idz][j+padding][k+padding], input[h][idx*stride+j][idy*stride+k]*output[idz][idx][idy]); } } } } } __global__ void backward_convolution_propagate_kernel(float**** weights, float*** input, float*** output, int input_depth, int input_width, int output_width, int output_depth, int k_size, int stride, int padding) { int idx = threadIdx.x + blockDim.x*blockIdx.x; int idy = threadIdx.y + blockDim.y*blockIdx.y; if (idx >= input_depth || idy >= output_depth) { return; } int max_move = k_size - padding; for (int j=-padding; j < max_move; j++) { for (int k=-padding; k < max_move; k++) { for (int l=0; l < output_width; l++) { for (int m=0; m < output_width; m++) { if (NOT_OUTSIDE(l*stride+j, m*stride+k, 0, input_width)) { atomicAdd(&input[idx][l*stride+j][m*stride+k], output[idy][l][m]*weights[idx][idy][j+padding][k+padding]); } } } } } } __global__ void backward_convolution_apply_propagate_kernel(float*** input, float*** input_z, int input_depth, int input_width, funcPtr d_f) { int idx = threadIdx.x + blockDim.x*blockIdx.x; int idy = threadIdx.y + blockDim.y*blockIdx.y; if (idx >= input_depth || idy >= input_width) { return; } for (int k=0; k < input_width; k++) { input[idx][idy][k] = input[idx][idy][k]*d_f(input_z[idx][idy][k]); } } void backward_convolution_device(Kernel_cnn* kernel, float*** input, float*** input_z, float*** output, int input_depth, int input_width, int output_depth, int output_width, int activation, int is_first, int kernel_size, int padding, int stride) { // Bias Kernel dim3 gridSize1(i_div_up(output_depth, BLOCKSIZE_x), i_div_up(output_width, BLOCKSIZE_y), i_div_up(output_width, BLOCKSIZE_y)); dim3 blockSize1(BLOCKSIZE_x, BLOCKSIZE_y, BLOCKSIZE_z); backward_convolution_dbias_kernel<<>>(kernel->d_bias, output, output_depth, output_width); gpuErrchk( cudaPeekAtLastError() ); gpuErrchk( cudaDeviceSynchronize() ); dim3 gridSize2(i_div_up(output_width, BLOCKSIZE_x), i_div_up(output_width, BLOCKSIZE_y), i_div_up(output_depth, BLOCKSIZE_y)); dim3 blockSize2(BLOCKSIZE_x, BLOCKSIZE_y, BLOCKSIZE_z); backward_convolution_dweight_kernel<<>>(kernel->d_weights, input, output, input_depth, output_depth, input_width, output_width, kernel_size, stride, padding); gpuErrchk( cudaPeekAtLastError() ); gpuErrchk( cudaDeviceSynchronize() ); // input propagation Kernel if (is_first != 1) { reset_3d_array(input, input_depth, input_width, input_width); dim3 gridSize3(i_div_up(input_depth, BLOCKSIZE_x), i_div_up(output_depth, BLOCKSIZE_y)); dim3 blockSize3(BLOCKSIZE_x, BLOCKSIZE_y); backward_convolution_propagate_kernel<<>>(kernel->weights, input, output, input_depth, input_width, output_width, output_depth, kernel_size, stride, padding); dim3 gridSize4(i_div_up(input_depth, BLOCKSIZE_x), i_div_up(input_width, BLOCKSIZE_y)); dim3 blockSize4(BLOCKSIZE_x, BLOCKSIZE_y); funcPtr d_function = get_activation_function_cuda(activation); backward_convolution_apply_propagate_kernel<<>>(input, input_z, input_depth, input_width, d_function); gpuErrchk( cudaPeekAtLastError() ); gpuErrchk( cudaDeviceSynchronize() ); } } #endif void backward_convolution_cpu(Kernel_cnn* ker, float*** input, float*** input_z, float*** output, int input_depth, int input_width, int output_depth, int output_width, int activation, int is_first, int kernel_size, int padding, int stride) { funcPtr d_function = get_activation_function(activation); int max_move = kernel_size - padding; // Bias for (int i=0; i < output_depth; i++) { for (int j=0; j < output_width; j++) { for (int k=0; k < output_width; k++) { ker->d_bias[i][j][k] += output[i][j][k]; } } } // Weights for (int h=0; h < input_depth; h++) { for (int i=0; i < output_depth; i++) { for (int j=-padding; j < max_move; j++) { for (int k=-padding; k < max_move; k++) { float tmp = 0; for (int l=0; l < output_width; l++) { for (int m=0; m < output_width; m++) { if (NOT_OUTSIDE(l*stride+j, m*stride+k, 0, input_width)) { tmp += input[h][l*stride+j][m*stride+k]*output[i][l][m]; } } } ker->d_weights[h][i][j+padding][k+padding] += tmp; } } } } // Input if (is_first==1) // Pas besoin de backpropager dans l'input return; for (int i=0; i < input_depth; i++) { for (int j=0; j < input_width; j++) { for (int k=0; k < input_width; k++) { input[i][j][k] = 0; } } } for (int h=0; h < input_depth; h++) { for (int i=0; i < output_depth; i++) { for (int j=-padding; j < max_move; j++) { for (int k=-padding; k < max_move; k++) { for (int l=0; l < output_width; l++) { for (int m=0; m < output_width; m++) { if (NOT_OUTSIDE(l*stride+j, m*stride+k, 0, input_width)) { input[h][l*stride+j][m*stride+k] += output[i][l][m]*ker->weights[h][i][j+padding][k+padding]; } } } } } } } for (int i=0; i < input_depth; i++) { for (int j=0; j < input_width; j++) { for (int k=0; k < input_width; k++) { input[i][j][k] = input[i][j][k]*d_function(input_z[i][j][k]); } } } } #ifdef __CUDACC__ extern "C" #endif void backward_convolution(Kernel_cnn* ker, float*** input, float*** input_z, float*** output, int input_depth, int input_width, int output_depth, int output_width, int activation, int is_first, int kernel_size, int padding, int stride) { #ifndef __CUDACC__ backward_convolution_cpu(ker, input, input_z, output, input_depth, input_width, output_depth, output_width, activation, is_first, kernel_size, padding, stride); #else backward_convolution_device(ker, input, input_z, output, input_depth, input_width, output_depth, output_width, activation, is_first, kernel_size, padding, stride); #endif }