#include #include #include #include #include #include #include #include "include/neuron.h" #include "include/neural_network.h" #ifndef __CUDACC__ // The functions and macros below are already defined when using NVCC #define INT_MIN -2147483648 float max(float a, float b){ return a < b ? b : a; } #endif bool drop(float prob) { return (rand() % 100) > 100*prob; } float sigmoid(float x){ return 1/(1 + exp(-x)); } float sigmoid_derivative(float x){ float tmp = exp(-x); return tmp/((1+tmp)*(1+tmp)); } float leaky_ReLU(float x){ if (x > 0) return x; return COEFF_LEAKY_RELU; } float leaky_ReLU_derivative(float x){ if (x > 0) return 1; return COEFF_LEAKY_RELU; } void network_creation(Network* network, int* neurons_per_layer, int nb_layers) { Layer* layer; network->nb_layers = nb_layers; network->layers = (Layer**)malloc(sizeof(Layer*)*nb_layers); for (int i=0; i < nb_layers; i++) { network->layers[i] = (Layer*)malloc(sizeof(Layer)); layer = network->layers[i]; layer->nb_neurons = neurons_per_layer[i]; layer->neurons = (Neuron**)malloc(sizeof(Neuron*)*network->layers[i]->nb_neurons); for (int j=0; j < layer->nb_neurons; j++) { layer->neurons[j] = (Neuron*)malloc(sizeof(Neuron)); if (i != network->nb_layers-1) { // On exclut la dernière couche dont les neurones ne contiennent pas de poids sortants layer->neurons[j]->weights = (float*)malloc(sizeof(float)*neurons_per_layer[i+1]); layer->neurons[j]->back_weights = (float*)malloc(sizeof(float)*neurons_per_layer[i+1]); layer->neurons[j]->last_back_weights = (float*)malloc(sizeof(float)*neurons_per_layer[i+1]); } } } } void deletion_of_network(Network* network) { Layer* layer; Neuron* neuron; for (int i=0; i < network->nb_layers; i++) { layer = network->layers[i]; for (int j=0; j < network->layers[i]->nb_neurons; j++) { neuron = layer->neurons[j]; if (i != network->nb_layers-1) { // On exclut la dernière couche dont les neurones ne contiennent pas de poids sortants free(neuron->weights); free(neuron->back_weights); free(neuron->last_back_weights); } free(neuron); } free(layer->neurons); free(network->layers[i]); } free(network->layers); free(network); } void forward_propagation(Network* network, bool is_training) { Layer* layer; // Couche actuelle Layer* pre_layer; // Couche précédente Neuron* neuron; float sum; float max_z = INT_MIN; for (int i=1; i < network->nb_layers; i++) { // La première couche contient déjà des valeurs sum = 0; max_z = INT_MIN; layer = network->layers[i]; pre_layer = network->layers[i-1]; for (int j=0; j < layer->nb_neurons; j++) { neuron = layer->neurons[j]; neuron->z = neuron->bias; for (int k=0; k < pre_layer->nb_neurons; k++) { neuron->z += pre_layer->neurons[k]->z * pre_layer->neurons[k]->weights[j]; } if (i < network->nb_layers-1) { if (!is_training) { if (j == 0) { neuron->z = ENTRY_DROPOUT*leaky_ReLU(neuron->z); } else { neuron->z = DROPOUT*leaky_ReLU(neuron->z); } } else if (!drop(DROPOUT)) { neuron->z = leaky_ReLU(neuron->z); } else { neuron->z = 0.; } } else { // Softmax seulement pour la dernière couche max_z = max(max_z, neuron->z); } } } layer = network->layers[network->nb_layers-1]; int size_last_layer = layer->nb_neurons; for (int j=0; j < size_last_layer; j++) { neuron = layer->neurons[j]; neuron->z = exp(neuron->z - max_z); sum += neuron->z; } for (int j=0; j < size_last_layer; j++) { neuron = layer->neurons[j]; neuron->z = neuron->z / sum; } } int* desired_output_creation(Network* network, int wanted_number) { int nb_neurons = network->layers[network->nb_layers-1]->nb_neurons; int* desired_output = (int*)malloc(sizeof(int)*nb_neurons); for (int i=0; i < nb_neurons; i++) // On initialise toutes les sorties à 0 par défaut desired_output[i] = 0; desired_output[wanted_number] = 1; // Seule la sortie voulue vaut 1 return desired_output; } void backward_propagation(Network* network, int* desired_output) { Neuron* neuron; Neuron* neuron2; float changes; float tmp; int i = network->nb_layers-2; int neurons_nb = network->layers[i+1]->nb_neurons; for (int j=0; j < network->layers[i+1]->nb_neurons; j++) { // Dernière couche en première neuron = network->layers[i+1]->neurons[j]; tmp = (desired_output[j]==1) ? neuron->z - 1 : neuron->z; for (int k=0; k < network->layers[i]->nb_neurons; k++) { neuron2 = network->layers[i]->neurons[k]; neuron2->back_weights[j] += neuron2->z*tmp; neuron2->last_back_weights[j] = neuron2->z*tmp; } neuron->last_back_bias = tmp; neuron->back_bias += tmp; } for (i--; i >= 0; i--) { // Autres couches ensuite neurons_nb = network->layers[i+1]->nb_neurons; for (int j=0; j < neurons_nb; j++) { neuron = network->layers[i+1]->neurons[j]; changes = 0; for (int k=0; k < network->layers[i+2]->nb_neurons; k++) { changes += (neuron->weights[k]*neuron->last_back_weights[k])/neurons_nb; } changes = changes*leaky_ReLU_derivative(neuron->z); if (neuron->z != 0) { neuron->back_bias += changes; neuron->last_back_bias = changes; } for (int l=0; l < network->layers[i]->nb_neurons; l++){ neuron2 = network->layers[i]->neurons[l]; if (neuron->z != 0) { neuron2->back_weights[j] += neuron2->weights[j]*changes; neuron2->last_back_weights[j] = neuron2->weights[j]*changes; } } } } } void network_modification(Network* network, uint32_t nb_modifs) { Neuron* neuron; for (int i=0; i < network->nb_layers; i++) { // on exclut la dernière couche for (int j=0; j < network->layers[i]->nb_neurons; j++) { neuron = network->layers[i]->neurons[j]; if (neuron->bias != 0 && PRINT_BIAIS) printf("C %d\tN %d\tb: %f \tDb: %f\n", i, j, neuron->bias, (LEARNING_RATE/nb_modifs) * neuron->back_bias); neuron->bias -= (LEARNING_RATE/nb_modifs) * neuron->back_bias; neuron->back_bias = 0; if (neuron->bias > MAX_RESEAU) neuron->bias = MAX_RESEAU; else if (neuron->bias < -MAX_RESEAU) neuron->bias = -MAX_RESEAU; if (i != network->nb_layers-1) { for (int k=0; k < network->layers[i+1]->nb_neurons; k++) { if (neuron->weights[k] != 0 && PRINT_POIDS) printf("C %d\tN %d -> %d\tp: %f \tDp: %f\n", i, j, k, neuron->weights[k], (LEARNING_RATE/nb_modifs) * neuron->back_weights[k]); neuron->weights[k] -= (LEARNING_RATE/nb_modifs) * neuron->back_weights[k]; neuron->back_weights[k] = 0; if (neuron->weights[k] > MAX_RESEAU) { neuron->weights[k] = MAX_RESEAU; printf("Erreur, max du réseau atteint"); } else if (neuron->weights[k] < -MAX_RESEAU) { neuron->weights[k] = -MAX_RESEAU; printf("Erreur, min du réseau atteint"); } } } } } } void network_initialisation(Network* network) { Neuron* neuron; double upper_bound; double lower_bound; double bound_gap; int nb_layers_loop = network->nb_layers -1; upper_bound = 1/sqrt((double)network->layers[nb_layers_loop]->nb_neurons); lower_bound = -upper_bound; bound_gap = upper_bound - lower_bound; srand(time(0)); for (int i=0; i < nb_layers_loop; i++) { // On exclut la dernière couche for (int j=0; j < network->layers[i]->nb_neurons; j++) { neuron = network->layers[i]->neurons[j]; if (i!=nb_layers_loop) { for (int k=0; k < network->layers[i+1]->nb_neurons; k++) { neuron->weights[k] = lower_bound + RAND_DOUBLE()*bound_gap; neuron->back_weights[k] = 0; neuron->last_back_weights[k] = 0; } } if (i > 0) { // On exclut la première couche neuron->bias = lower_bound + RAND_DOUBLE()*bound_gap; neuron->back_bias = 0; neuron->last_back_bias = 0; } } } } void patch_network(Network* network, Network* delta, uint32_t nb_modifs) { Neuron* neuron; Neuron* dneuron; for (int i=0; i < network->nb_layers; i++) { for (int j=0; j < network->layers[i]->nb_neurons; j++) { neuron = network->layers[i]->neurons[j]; dneuron = delta->layers[i]->neurons[j]; neuron->bias -= (LEARNING_RATE/nb_modifs) * dneuron->back_bias; dneuron->back_bias = 0; if (i != network->nb_layers-1) { for (int k=0; k < network->layers[i+1]->nb_neurons; k++) { neuron->weights[k] -= (LEARNING_RATE/nb_modifs) * dneuron->back_weights[k]; // On modifie le poids du neurone à partir des données de la propagation en arrière dneuron->back_weights[k] = 0; } } } } } void patch_delta(Network* network, Network* delta, uint32_t nb_modifs) { Neuron* neuron; Neuron* dneuron; for (int i=0; i < network->nb_layers; i++) { for (int j=0; j < network->layers[i]->nb_neurons; j++) { neuron = network->layers[i]->neurons[j]; dneuron = delta->layers[i]->neurons[j]; neuron->back_bias += dneuron->back_bias/nb_modifs; if (i != network->nb_layers-1) { for (int k=0; k < network->layers[i+1]->nb_neurons; k++) { neuron->back_weights[k] += dneuron->back_weights[k]/nb_modifs; } } } } } Network* copy_network(Network* network) { Network* network2 = (Network*)malloc(sizeof(Network)); Layer* layer; Neuron* neuron1; Neuron* neuron; network2->nb_layers = network->nb_layers; network2->layers = (Layer**)malloc(sizeof(Layer*)*network->nb_layers); for (int i=0; i < network2->nb_layers; i++) { layer = (Layer*)malloc(sizeof(Layer)); layer->nb_neurons = network->layers[i]->nb_neurons; layer->neurons = (Neuron**)malloc(sizeof(Neuron*)*layer->nb_neurons); for (int j=0; j < layer->nb_neurons; j++) { neuron = (Neuron*)malloc(sizeof(Neuron)); neuron1 = network->layers[i]->neurons[j]; neuron->bias = neuron1->bias; neuron->z = neuron1->z; neuron->back_bias = neuron1->back_bias; neuron->last_back_bias = neuron1->last_back_bias; if (i != network2->nb_layers-1) { (void)network2->layers[i+1]->nb_neurons; neuron->weights = (float*)malloc(sizeof(float)*network->layers[i+1]->nb_neurons); neuron->back_weights = (float*)malloc(sizeof(float)*network->layers[i+1]->nb_neurons); neuron->last_back_weights = (float*)malloc(sizeof(float)*network->layers[i+1]->nb_neurons); for (int k=0; k < network->layers[i+1]->nb_neurons; k++) { neuron->weights[k] = neuron1->weights[k]; neuron->back_weights[k] = neuron1->back_weights[k]; neuron->last_back_weights[k] = neuron1->last_back_weights[k]; } } layer->neurons[j] = neuron; } network2->layers[i] = layer; } return network2; } float loss_computing(Network* network, int wanted_number){ float erreur = 0; float neuron_value; for (int i=0; i < network->nb_layers-1; i++) { neuron_value = network->layers[network->nb_layers-1]->neurons[i]->z; if (i == wanted_number) { erreur += (1-neuron_value)*(1-neuron_value); } else { erreur += neuron_value*neuron_value; } } return erreur; }