#include #include #include #include // Is it used ? #include "include/backpropagation.h" #include "include/initialisation.h" #include "include/function.h" #include "include/creation.h" #include "include/update.h" #include "include/make.h" #include "../include/colors.h" #include "include/cnn.h" // Augmente les dimensions de l'image d'entrée #define PADDING_INPUT 2 int will_be_drop(int dropout_prob) { return (rand() % 100) < dropout_prob; } void write_image_in_network_32(int** image, int height, int width, float** input) { int padding = (32 - height)/2; for (int i=0; i < padding; i++) { for (int j=0; j < 32; j++) { input[i][j] = 0.; input[31-i][j] = 0.; input[j][i] = 0.; input[j][31-i] = 0.; } } for (int i=0; i < width; i++) { for (int j=0; j < height; j++) { input[i+2][j+2] = (float)image[i][j] / 255.0f; } } } void forward_propagation(Network* network) { int activation, input_depth, input_width, output_depth, output_width; int n = network->size; float*** input; float*** output; float*** output_a; Kernel* k_i; for (int i=0; i < n-1; i++) { // Transférer les informations de 'input' à 'output' k_i = network->kernel[i]; output_a = network->input_z[i+1]; input = network->input[i]; input_depth = network->depth[i]; input_width = network->width[i]; output = network->input[i+1]; output_depth = network->depth[i+1]; output_width = network->width[i+1]; activation = k_i->activation; if (k_i->nn) { drop_neurones(input, 1, 1, input_width, network->dropout); } else { drop_neurones(input, input_depth, input_width, input_width, network->dropout); } if (k_i->cnn) { // Convolution make_convolution(k_i->cnn, input, output, output_width); copy_input_to_input_z(output, output_a, output_depth, output_width, output_width); choose_apply_function_matrix(activation, output, output_depth, output_width); } else if (k_i->nn) { // Full connection if (input_depth==1) { // Vecteur -> Vecteur make_dense(k_i->nn, input[0][0], output[0][0], input_width, output_width); } else { // Matrice -> Vecteur make_dense_linearised(k_i->nn, input, output[0][0], input_depth, input_width, output_width); } copy_input_to_input_z(output, output_a, 1, 1, output_width); choose_apply_function_vector(activation, output, output_width); } else { // Pooling if (n-2==i) { printf("Le réseau ne peut pas finir par une pooling layer\n"); return; } else { // Pooling sur une matrice make_average_pooling(input, output, activation/100, output_depth, output_width); } copy_input_to_input_z(output, output_a, output_depth, output_width, output_width); } } } void backward_propagation(Network* network, float wanted_number) { printf_warning("Appel de backward_propagation, incomplet\n"); float* wanted_output = generate_wanted_output(wanted_number); int n = network->size; int activation, input_depth, input_width, output_depth, output_width; float*** input; float*** input_z; float*** output; Kernel* k_i; rms_backward(network->input[n-1][0][0], network->input_z[n-1][0][0], wanted_output, network->width[n-1]); // Backward sur la dernière colonne for (int i=n-2; i >= 0; i--) { // Modifie 'k_i' à partir d'une comparaison d'informations entre 'input' et 'output' k_i = network->kernel[i]; input = network->input[i]; input_z = network->input_z[i]; input_depth = network->depth[i]; input_width = network->width[i]; output = network->input[i+1]; output_depth = network->depth[i+1]; output_width = network->width[i+1]; activation = i==0?SIGMOID:k_i->activation; if (k_i->cnn) { // Convolution ptr d_f = get_function_activation(activation); backward_convolution(k_i->cnn, input, input_z, output, input_depth, input_width, output_depth, output_width, d_f, i==0); } else if (k_i->nn) { // Full connection ptr d_f = get_function_activation(activation); if (input_depth==1) { // Vecteur -> Vecteur backward_fully_connected(k_i->nn, input[0][0], input_z[0][0], output[0][0], input_width, output_width, d_f, i==0); } else { // Matrice -> vecteur backward_linearisation(k_i->nn, input, input_z, output[0][0], input_depth, input_width, output_width, d_f); } } else { // Pooling backward_2d_pooling(input, output, input_width, output_width, input_depth); // Depth pour input et output a la même valeur } } free(wanted_output); } void drop_neurones(float*** input, int depth, int dim1, int dim2, int dropout) { for (int i=0; i division par 0 impossible\n"); return 0.; } float loss=0.; for (int i=0; i < len ; i++) { loss += (output[i]-wanted_output[i])*(output[i]-wanted_output[i]); } return loss/len; } float compute_cross_entropy_loss(float* output, float* wanted_output, int len) { float loss=0.; for (int i=0; i < len ; i++) { if (wanted_output[i]==1) { if (output[i]==0.) { loss -= log(FLT_EPSILON); } else { loss -= log(output[i]); } } } return loss; } float* generate_wanted_output(float wanted_number) { float* wanted_output = (float*)malloc(sizeof(float)*10); for (int i=0; i < 10; i++) { if (i==wanted_number) { wanted_output[i]=1; } else { wanted_output[i]=0; } } return wanted_output; }