#include #include #include #include #include #include #include "../mnist/include/mnist.h" #include "include/initialisation.h" #include "include/neuron_io.h" #include "../include/colors.h" #include "include/function.h" #include "include/creation.h" #include "include/update.h" #include "include/utils.h" #include "include/free.h" #include "include/jpeg.h" #include "include/cnn.h" #include "include/train.h" int div_up(int a, int b) { // Partie entière supérieure de a/b return ((a % b) != 0) ? (a / b + 1) : (a / b); } void* train_thread(void* parameters) { TrainParameters* param = (TrainParameters*)parameters; Network* network = param->network; imgRawImage* image; int maxi; int*** images = param->images; int* labels = (int*)param->labels; int width = param->width; int height = param->height; int dataset_type = param->dataset_type; int start = param->start; int nb_images = param->nb_images; float accuracy = 0.; for (int i=start; i < start+nb_images; i++) { if (dataset_type == 0) { write_image_in_network_32(images[i], height, width, network->input[0][0]); forward_propagation(network); maxi = indice_max(network->input[network->size-1][0][0], 10); backward_propagation(network, labels[i]); if (maxi == labels[i]) { accuracy += 1.; } } else { if (!param->dataset->images[i]) { image = loadJpegImageFile(param->dataset->fileNames[i]); param->dataset->images[i] = image->lpData; free(image); } write_image_in_network_260(param->dataset->images[i], height, width, network->input[0]); forward_propagation(network); maxi = indice_max(network->input[network->size-1][0][0], param->dataset->numCategories); backward_propagation(network, param->dataset->labels[i]); if (maxi == (int)param->dataset->labels[i]) { accuracy += 1.; } free(param->dataset->images[i]); param->dataset->images[i] = NULL; } } param->accuracy = accuracy; return NULL; } void train(int dataset_type, char* images_file, char* labels_file, char* data_dir, int epochs, char* out) { srand(time(NULL)); int input_dim = -1; int input_depth = -1; float accuracy; float current_accuracy; int nb_images_total; // Images au total int nb_images_total_remaining; // Images restantes dans un batch int batches_epoques; // Batches par époque int*** images; unsigned int* labels; jpegDataset* dataset; if (dataset_type == 0) { // Type MNIST // Chargement des images du set de données MNIST int* parameters = read_mnist_images_parameters(images_file); nb_images_total = parameters[0]; free(parameters); images = read_mnist_images(images_file); labels = read_mnist_labels(labels_file); input_dim = 32; input_depth = 1; } else { // Type JPG dataset = loadJpegDataset(data_dir); input_dim = dataset->height + 4; // image_size + padding input_depth = dataset->numComponents; nb_images_total = dataset->numImages; } // Initialisation du réseau Network* network = create_network_lenet5(0.01, 0, TANH, GLOROT, input_dim, input_depth); #ifdef USE_MULTITHREADING int nb_remaining_images; // Nombre d'images restantes à lancer pour une série de threads // Récupération du nombre de threads disponibles int nb_threads = get_nprocs(); pthread_t *tid = (pthread_t*)malloc(nb_threads * sizeof(pthread_t)); // Création des paramètres donnés à chaque thread dans le cas du multi-threading TrainParameters** train_parameters = (TrainParameters**)malloc(sizeof(TrainParameters*)*nb_threads); TrainParameters* param; for (int k=0; k < nb_threads; k++) { train_parameters[k] = (TrainParameters*)malloc(sizeof(TrainParameters)); param = train_parameters[k]; param->dataset_type = dataset_type; if (dataset_type == 0) { param->images = images; param->labels = labels; param->dataset = NULL; param->width = 28; param->height = 28; } else { param->dataset = dataset; param->width = dataset->width; param->height = dataset->height; param->images = NULL; param->labels = NULL; } param->nb_images = BATCHES / nb_threads; } #else // Création des paramètres donnés à l'unique // thread dans l'hypothèse ou le multi-threading n'est pas utilisé. // Cela est utile à des fins de débogage notamment, // où l'utilisation de threads rend vite les choses plus compliquées qu'elles ne le sont. TrainParameters* train_params = (TrainParameters*)malloc(sizeof(TrainParameters)); train_params->network = network; train_params->dataset_type = dataset_type; if (dataset_type == 0) { train_params->images = images; train_params->labels = labels; train_params->width = 28; train_params->height = 28; train_params->dataset = NULL; } else { train_params->dataset = dataset; train_params->width = dataset->width; train_params->height = dataset->height; train_params->images = NULL; train_params->labels = NULL; } train_params->nb_images = BATCHES; #endif for (int i=0; i < epochs; i++) { // La variable accuracy permet d'avoir une ESTIMATION // du taux de réussite et de l'entraînement du réseau, // mais n'est en aucun cas une valeur réelle dans le cas // du multi-threading car chaque copie du réseau initiale sera légèrement différente // et donnera donc des résultats différents sur les mêmes images. accuracy = 0.; batches_epoques = div_up(nb_images_total, BATCHES); nb_images_total_remaining = nb_images_total; for (int j=0; j < batches_epoques; j++) { #ifdef USE_MULTITHREADING if (j == batches_epoques-1) { nb_remaining_images = nb_images_total_remaining; nb_images_total_remaining = 0; } else { nb_images_total_remaining -= BATCHES; nb_remaining_images = BATCHES; } for (int k=0; k < nb_threads; k++) { if (k == nb_threads-1) { train_parameters[k]->nb_images = nb_remaining_images; nb_remaining_images = 0; } else { nb_remaining_images -= BATCHES / nb_threads; } train_parameters[k]->start = BATCHES*j + (BATCHES/nb_threads)*k; train_parameters[k]->network = copy_network(network); pthread_create( &tid[k], NULL, train_thread, (void*) train_parameters[k]); } for (int k=0; k < nb_threads; k++) { // On attend la terminaison de chaque thread un à un pthread_join( tid[k], NULL ); accuracy += train_parameters[k]->accuracy / (float) nb_images_total; update_weights(network, train_parameters[k]->network); update_bias(network, train_parameters[k]->network); free_network(train_parameters[k]->network); } current_accuracy = accuracy * nb_images_total/((j+1)*BATCHES); printf("\rThreads [%d]\tÉpoque [%d/%d]\tImage [%d/%d]\tAccuracy: "YELLOW"%0.1f%%"RESET" ", nb_threads, i, epochs, BATCHES*(j+1), nb_images_total, current_accuracy*100); fflush(stdout); #else train_params->start = j*BATCHES; train_thread((void*)train_params); accuracy += train_params->accuracy / (float) nb_images_total; current_accuracy = accuracy * nb_images_total/((j+1)*BATCHES); update_weights(network, network); update_bias(network, network); printf("\rÉpoque [%d/%d]\tImage [%d/%d]\tAccuracy: "YELLOW"%0.1f%%"RESET" ", i, epochs, BATCHES*(j+1), nb_images_total, current_accuracy*100); fflush(stdout); #endif } #ifdef USE_MULTITHREADING printf("\rThreads [%d]\tÉpoque [%d/%d]\tImage [%d/%d]\tAccuracy: "GREEN"%0.1f%%"RESET" \n", nb_threads, i, epochs, nb_images_total, nb_images_total, accuracy*100); #else printf("\rÉpoque [%d/%d]\tImage [%d/%d]\tAccuracy: "GREEN"%0.1f%%"RESET" \n", i, epochs, nb_images_total, nb_images_total, accuracy*100); #endif write_network(out, network); } free_network(network); #ifdef USE_MULTITHREADING free(tid); #else free(train_params); #endif }