#include #include #include #include #include #include "../src/cnn/include/matrix_multiplication.h" float random_float(float low, float high) { float t = (float)rand() / (float)RAND_MAX; return (1.0f - t) * low + t * high; } void fill_matrix_random(float **matrix, int n, int p) { for (int i=0; i < n; i++) { for (int j=0; j < p; j++) { matrix[i][j] = random_float(0.0f, 15.0f); } } } void print_matrix(float** mat, int n, int p) { for (int i=0; i < n; i++) { printf("[\t"); for (int j=0; j < p; j++) { printf("%0.1f\t", mat[i][j]); } printf("]\n"); } } float** create_matrix(int n, int p) { float** matrix = (float**)malloc(n*sizeof(float*)); for (int i=0; i < n; i++) { matrix[i] = (float*)malloc(sizeof(float)*p); } fill_matrix_random(matrix, n, p); return matrix; } float** create_empty_matrix(int n, int p) { float** matrix = (float**)malloc(n*sizeof(float*)); for (int i=0; i < n; i++) { matrix[i] = (float*)malloc(p*sizeof(float)); for (int j=0; j < p; j++) { matrix[i][j] = 0.; } } return matrix; } bool check_matrices_equality(float** m1, float** m2, int n, int p, int acceptation) { for (int i=0; i < n; i++) { for (int j=0; j < p; j++) { if (fabs(m1[i][j] - m2[i][j]) > 0.01*acceptation) { return false; } } } return true; } void run_matrices_test(int n, int p, int q) { clock_t start, end; double cpu_time_used, gpu_time_used; float** matrix1 = create_matrix(n, p); float** matrix2 = create_matrix(p, q); float** result_gpu = create_empty_matrix(n, q); float** result_cpu = create_empty_matrix(n, q); printf("(%d,%d)x(%d,%d) Computing on GPU.\n", n, p, p, q); start = clock(); matrix_multiplication_device(matrix1, matrix2, result_gpu, n, p, q); end = clock(); cpu_time_used = ((double) (end - start)) / CLOCKS_PER_SEC; printf("(%d,%d)x(%d,%d) Time used for GPU: %lf seconds\n", n, p, p, q, cpu_time_used); printf("OK\n"); printf("(%d,%d)x(%d,%d) Computing on CPU.\n", n, p, p, q); start = clock(); matrix_multiplication_host(matrix1, matrix2, result_cpu, n, p, q); end = clock(); gpu_time_used = ((double) (end - start)) / CLOCKS_PER_SEC; printf("(%d,%d)x(%d,%d) Time used for CPU: %lf seconds\n", n, p, p, q, gpu_time_used); printf("OK\n"); // Vérification de l'égalité des matrices printf("(%d,%d)x(%d,%d) Checking equality.\n", n, p, p, q); if (!check_matrices_equality(result_gpu, result_cpu, n, q, p)) { exit(1); } printf("OK\n"); // On libère l'espace mémoire alloué for (int i=0; i < n; i++) { free(matrix1[i]); } free(matrix1); for (int i=0; i < p; i++) { free(matrix2[i]); } free(matrix2); for (int i=0; i < n; i++) { free(result_cpu[i]); } free(result_cpu); for (int i=0; i < n; i++) { free(result_gpu[i]); } free(result_gpu); } int main() { printf("Checking CUDA compatibility.\n"); bool cuda_compatible = check_cuda_compatibility(); if (!cuda_compatible) { printf("CUDA not compatible, skipping tests.\n"); return 0; } printf("OK\n"); srand(time(NULL)); run_matrices_test(200, 1000, 200); run_matrices_test(200, 1000, 20); run_matrices_test(20, 1000, 200); return 0; } // On obtient une différence entre le calcul fait par le GPU et par le CPU. // Cette différence est linéaire en p. (err_moy = p*1.639e-6) // Elle ne varie pas en fonction de n et q. // Cette erreur est sûrement dûe à différences mineurs dans la précision du stockage des flottants // dans la mémoire RAM et VRAM (du GPU)