#include #include #include "creation.h" #include "function.h" #include "initialisation.h" Network* create_network(int max_size, int dropout, int initialisation, int input_dim, int input_depth) { if (dropout<0 || dropout>100) { printf("Erreur, la probabilité de dropout n'est pas respecté, elle doit être comprise entre 0 et 100\n"); } Network* network = malloc(sizeof(Network)); network->max_size = max_size; network->dropout = dropout; network->initialisation = initialisation; network->size = 1; network->input = malloc(sizeof(float***)*max_size); network->kernel = malloc(sizeof(Kernel)*(max_size-1)); create_a_cube_input_layer(network, 0, input_depth, input_dim); int i, j; network->dim = malloc(sizeof(int*)*max_size); for (i=0; idim[i] = malloc(sizeof(int)*2); } network->dim[0][0] = input_dim; network->dim[0][1] = input_depth; return network; } Network* create_network_lenet5(int dropout, int activation, int initialisation) { Network* network; network = create_network(8, dropout, initialisation, 32, 1); add_convolution(network, 6, 5, activation); add_average_pooling(network, 2, activation); add_convolution(network, 16, 5, activation); add_average_pooling_flatten(network, 2, activation); add_dense(network, 120, 84, activation); add_dense(network, 84, 10, activation); add_dense(network, 10, 10, SOFTMAX); return network; } void create_a_cube_input_layer(Network* network, int pos, int depth, int dim) { int i, j; network->input[pos] = malloc(sizeof(float**)*depth); for (i=0; iinput[pos][i] = malloc(sizeof(float*)*dim); for (j=0; jinput[pos][i][j] = malloc(sizeof(float)*dim); } } network->dim[pos][0] = dim; network->dim[pos][1] = depth; } void create_a_line_input_layer(Network* network, int pos, int dim) { int i; network->input[pos] = malloc(sizeof(float**)); network->input[pos][0] = malloc(sizeof(float*)); network->input[pos][0][0] = malloc(sizeof(float)*dim); } void add_average_pooling(Network* network, int kernel_size, int activation) { int n = network->size; if (network->max_size == n) { printf("Impossible de rajouter une couche d'average pooling, le réseau est déjà plein\n"); return; } network->kernel[n].cnn = NULL; network->kernel[n].nn = NULL; network->kernel[n].activation = activation + 100*kernel_size; create_a_cube_input_layer(network, n, network->dim[n-1][1], network->dim[n-1][0]/2); network->size++; } void add_average_pooling_flatten(Network* network, int kernel_size, int activation) { int n = network->size; if (network->max_size == n) { printf("Impossible de rajouter une couche d'average pooling, le réseau est déjà plein\n"); return; } network->kernel[n].cnn = NULL; network->kernel[n].nn = NULL; network->kernel[n].activation = activation + 100*kernel_size; int dim = (network->dim[n-1][0]*network->dim[n-1][0]*network->dim[n-1][1])/(kernel_size*kernel_size); create_a_line_input_layer(network, n, dim); network->size++; } void add_convolution(Network* network, int nb_filter, int kernel_size, int activation) { int n = network->size, i, j, k; if (network->max_size == n) { printf("Impossible de rajouter une couche de convolution, le réseau est déjà plein\n"); return; } int r = network->dim[n-1][1]; int c = nb_filter; network->kernel[n].nn = NULL; network->kernel[n].cnn = malloc(sizeof(Kernel_cnn)); network->kernel[n].activation = activation; network->kernel[n].cnn->k_size = kernel_size; network->kernel[n].cnn->rows = r; network->kernel[n].cnn->columns = c; network->kernel[n].cnn->w = malloc(sizeof(float***)*r); network->kernel[n].cnn->d_w = malloc(sizeof(float***)*r); for (i=0; ikernel[n].cnn->w[i] = malloc(sizeof(float**)*c); network->kernel[n].cnn->d_w[i] = malloc(sizeof(float**)*c); for (j=0; jkernel[n].cnn->w[i][j] = malloc(sizeof(float*)*kernel_size); network->kernel[n].cnn->d_w[i][j] = malloc(sizeof(float*)*kernel_size); for (k=0; kkernel[n].cnn->w[i][j][k] = malloc(sizeof(float)*kernel_size); network->kernel[n].cnn->d_w[i][j][k] = malloc(sizeof(float)*kernel_size); } } } network->kernel[n].cnn->bias = malloc(sizeof(float**)*c); network->kernel[n].cnn->d_bias = malloc(sizeof(float**)*c); for (i=0; ikernel[n].cnn->bias[i] = malloc(sizeof(float*)*kernel_size); network->kernel[n].cnn->d_bias[i] = malloc(sizeof(float*)*kernel_size); for (j=0; jkernel[n].cnn->bias[i][j] = malloc(sizeof(float)*kernel_size); network->kernel[n].cnn->d_bias[i][j] = malloc(sizeof(float)*kernel_size); } } create_a_cube_input_layer(network, n, c, network->dim[n-1][0] - 2*(kernel_size/2)); int n_int = network->dim[n-1][0]*network->dim[n-1][0]*network->dim[n-1][1]; int n_out = network->dim[n][0]*network->dim[n][0]*network->dim[n][1]; initialisation_3d_matrix(network->initialisation, network->kernel[n].cnn->bias, c, kernel_size, kernel_size, n_int+n_out); initialisation_3d_matrix(ZERO, network->kernel[n].cnn->d_bias, c, kernel_size, kernel_size, n_int+n_out); initialisation_4d_matrix(network->initialisation, network->kernel[n].cnn->w, r, c, kernel_size, kernel_size, n_int+n_out); initialisation_4d_matrix(ZERO, network->kernel[n].cnn->d_w, r, c, kernel_size, kernel_size, n_int+n_out); network->size++; } void add_dense(Network* network, int input_units, int output_units, int activation) { int n = network->size; if (network->max_size == n) { printf("Impossible de rajouter une couche dense, le réseau est déjà plein\n"); return; } network->kernel[n].cnn = NULL; network->kernel[n].nn = malloc(sizeof(Kernel_nn)); network->kernel[n].activation = activation; network->kernel[n].nn->input_units = input_units; network->kernel[n].nn->output_units = output_units; network->kernel[n].nn->bias = malloc(sizeof(float)*output_units); network->kernel[n].nn->d_bias = malloc(sizeof(float)*output_units); network->kernel[n].nn->weights = malloc(sizeof(float*)*input_units); network->kernel[n].nn->d_weights = malloc(sizeof(float*)*input_units); for (int i=0; ikernel[n].nn->weights[i] = malloc(sizeof(float)*output_units); network->kernel[n].nn->d_weights[i] = malloc(sizeof(float)*output_units); } initialisation_1d_matrix(network->initialisation, network->kernel[n].nn->bias, output_units, output_units+input_units); initialisation_1d_matrix(ZERO, network->kernel[n].nn->d_bias, output_units, output_units+input_units); initialisation_2d_matrix(network->initialisation, network->kernel[n].nn->weights, input_units, output_units, output_units+input_units); initialisation_2d_matrix(ZERO, network->kernel[n].nn->d_weights, input_units, output_units, output_units+input_units); create_a_line_input_layer(network, n, output_units); network->size++; }