Add 3 new types of initialisation

This commit is contained in:
julienChemillier 2023-03-09 06:57:51 +01:00
parent 91e4a1b316
commit fec4651946
3 changed files with 193 additions and 64 deletions

View File

@ -235,7 +235,7 @@ void add_dense(Network* network, int size_output, int activation) {
}
}
initialisation_1d_matrix(network->initialisation, nn->bias, size_output, size_input);
initialisation_1d_matrix(network->initialisation, nn->bias, size_output, size_input, size_output);
initialisation_2d_matrix(network->initialisation, nn->weights, size_input, size_output, size_input, size_output);
create_a_line_input_layer(network, n, size_output);
create_a_line_input_z_layer(network, n, size_output);
@ -275,7 +275,7 @@ void add_dense_linearisation(Network* network, int size_output, int activation)
nn->d_weights[i][j] = 0.;
}
}
initialisation_1d_matrix(network->initialisation, nn->bias, size_output, size_input);
initialisation_1d_matrix(network->initialisation, nn->bias, size_output, size_input, size_output);
initialisation_2d_matrix(network->initialisation, nn->weights, size_input, size_output, size_input, size_output);
create_a_line_input_layer(network, n, size_output);
create_a_line_input_z_layer(network, n, size_output);

View File

@ -3,16 +3,24 @@
// Génère un flottant entre 0 et 1
#define RAND_FLT() ((float)rand())/((float)RAND_MAX)
#define TWOPI 6.2831853071795864769252867665
#define ZERO 0
#define GLOROT 1
#define XAVIER 1 // Xavier and Glorot initialisations are the same
#define HE 2
#define XAVIER 1 // Xavier et Glorot initialisations sont indentiques
#define NORMALIZED_XAVIER 2
#define HE 3
/*
* Renvoie un flottant à partir de la loi normale [x;y].
* La fonction repose sur la méthode de Box-Muller
*/
float randn();
/*
* Initialise une matrice 1d dim de float en fonction du type d'initialisation
*/
void initialisation_1d_matrix(int initialisation, float* matrix, int dim, int n_in);
void initialisation_1d_matrix(int initialisation, float* matrix, int dim, int n_in, int n_out);
/*
* Initialise une matrice 2d dim1*dim2 de float en fonction du type d'initialisation

View File

@ -8,87 +8,208 @@
// he initialisation : RELU (2/fan_in)
// LeCun initialisation: SELU (1/fan_in)
// Only uniform for the moment
void initialisation_1d_matrix(int initialisation, float* matrix, int dim, int n_in) {
int n;
if (initialisation == GLOROT) {
n = (n_in + dim)/2;
// Explained in https://machinelearningmastery.com/weight-initialization-for-deep-learning-neural-networks/
} else if (initialisation == HE) {
n = n_in/2;
} else {
printf_warning("Initialisation non reconnue dans 'initialisation_1d_matrix' \n");
return ;
float randn() {
float f1=0.;
while (f1 == 0) {
f1 = RAND_FLT();
}
float lower_bound = -1/sqrt((double)n);
float distance_bounds = -2*lower_bound;
for (int i=0; i < dim; i++) {
matrix[i] = lower_bound + RAND_FLT()*distance_bounds;
return sqrt(-2.0*log(f1))*cos(TWOPI*RAND_FLT());
}
void initialisation_1d_matrix(int initialisation, float* matrix, int dim, int n_in, int n_out) {
float lower_bound, distance_bounds;
if (initialisation == ZERO) {
for (int i=0; i<dim; i++) {
matrix[i] = 0;
}
}
else if (initialisation == XAVIER)
{
lower_bound = -1/sqrt((double)n_in);
distance_bounds = -2*lower_bound;
for (int i=0; i < dim; i++) {
matrix[i] = lower_bound + RAND_FLT()*distance_bounds;
}
}
else if (initialisation == NORMALIZED_XAVIER)
{
lower_bound = -sqrt(6/(double)(n_in + n_out));
distance_bounds = -2*lower_bound;
for (int i=0; i < dim; i++) {
matrix[i] = lower_bound + RAND_FLT()*distance_bounds;
}
}
else if (initialisation == HE)
{
distance_bounds = 2/sqrt((double)n_in);
for (int i=0; i < dim; i++) {
matrix[i] = randn()*distance_bounds;
}
}
else
{
printf_warning("Initialisation non reconnue dans 'initialisation_1d_matrix' \n");
}
}
void initialisation_2d_matrix(int initialisation, float** matrix, int dim1, int dim2, int n_in, int n_out) {
int n;
if (initialisation == GLOROT) {
n = (n_in + n_out)/2;
float lower_bound, distance_bounds;
} else if (initialisation == HE) {
n = n_in/2;
} else {
printf_warning("Initialisation non reconnue dans 'initialisation_2d_matrix' \n");
return ;
}
float lower_bound = -1/sqrt((double)n);
float distance_bounds = -2*lower_bound;
for (int i=0; i < dim1; i++) {
for (int j=0; j < dim2; j++) {
matrix[i][j] = lower_bound + RAND_FLT()*distance_bounds;
if (initialisation == ZERO) {
for (int i=0; i<dim1; i++) {
for (int j=0; j<dim2; j++) {
matrix[i][j] = 0;
}
}
}
else if (initialisation == XAVIER)
{
lower_bound = -1/sqrt((double)n_in);
distance_bounds = -2*lower_bound;
for (int i=0; i<dim1; i++) {
for (int j=0; j<dim2; j++) {
matrix[i][j] = lower_bound + RAND_FLT()*distance_bounds;
}
}
}
else if (initialisation == NORMALIZED_XAVIER)
{
lower_bound = -sqrt(6/(double)(n_in + n_out));
distance_bounds = -2*lower_bound;
for (int i=0; i<dim1; i++) {
for (int j=0; j<dim2; j++) {
matrix[i][j] = lower_bound + RAND_FLT()*distance_bounds;
}
}
}
else if (initialisation == HE)
{
distance_bounds = 2/sqrt((double)n_in);
for (int i=0; i<dim1; i++) {
for (int j=0; j<dim2; j++) {
matrix[i][j] = randn()*distance_bounds;
}
}
}
else
{
printf_warning("Initialisation non reconnue dans 'initialisation_2d_matrix' \n");
}
}
void initialisation_3d_matrix(int initialisation, float*** matrix, int depth, int dim1, int dim2, int n_in, int n_out) {
int n;
if (initialisation == GLOROT) {
n = (n_in + n_out)/2;
float lower_bound, distance_bounds;
} else if (initialisation == HE) {
n = n_in/2;
} else {
printf_warning("Initialisation non reconnue dans 'initialisation_3d_matrix' \n");
return ;
}
float lower_bound = -1/sqrt((double)n);
float distance_bounds = -2*lower_bound;
for (int i=0; i < depth; i++) {
for (int j=0; j < dim1; j++) {
for (int k=0; k < dim2; k++) {
matrix[i][j][k] = lower_bound + RAND_FLT()*distance_bounds;
if (initialisation == ZERO) {
for (int i=0; i<depth; i++) {
for (int j=0; j<dim1; j++) {
for (int k=0; k<dim2; k++) {
matrix[i][j][k] = 0;
}
}
}
}
else if (initialisation == XAVIER)
{
lower_bound = -1/sqrt((double)n_in);
distance_bounds = -2*lower_bound;
for (int i=0; i<depth; i++) {
for (int j=0; j<dim1; j++) {
for (int k=0; k<dim2; k++) {
matrix[i][j][k] = lower_bound + RAND_FLT()*distance_bounds;
}
}
}
}
else if (initialisation == NORMALIZED_XAVIER)
{
lower_bound = -sqrt(6/(double)(n_in + n_out));
distance_bounds = -2*lower_bound;
for (int i=0; i<depth; i++) {
for (int j=0; j<dim1; j++) {
for (int k=0; k<dim2; k++) {
matrix[i][j][k] = lower_bound + RAND_FLT()*distance_bounds;
}
}
}
}
else if (initialisation == HE)
{
distance_bounds = 2/sqrt((double)n_in);
for (int i=0; i<depth; i++) {
for (int j=0; j<dim1; j++) {
for (int k=0; k<dim2; k++) {
matrix[i][j][k] = randn()*distance_bounds;
}
}
}
}
else
{
printf_warning("Initialisation non reconnue dans 'initialisation_3d_matrix' \n");
}
}
void initialisation_4d_matrix(int initialisation, float**** matrix, int depth1, int depth2, int dim1, int dim2, int n_in, int n_out) {
int n;
if (initialisation == GLOROT) {
n = (n_in + n_out)/2;
float lower_bound, distance_bounds;
} else if (initialisation == HE) {
n = n_in/2;
} else {
printf_warning("Initialisation non reconnue dans 'initialisation_3d_matrix' \n");
return ;
}
float lower_bound = -1/sqrt((double)n);
float distance_bounds = -2*lower_bound;
for (int i=0; i < depth1; i++) {
for (int j=0; j < depth2; j++) {
for (int k=0; k < dim1; k++) {
for (int l=0; l < dim2; l++) {
matrix[i][j][k][l] = lower_bound + RAND_FLT()*distance_bounds;
if (initialisation == ZERO) {
for (int i=0; i<depth1; i++) {
for (int j=0; j<depth2; j++) {
for (int k=0; k<dim1; k++) {
for (int l=0; l<depth2; l++) {
matrix[i][j][k][l] = 0;
}
}
}
}
}
else if (initialisation == XAVIER)
{
lower_bound = -1/sqrt((double)n_in);
distance_bounds = -2*lower_bound;
for (int i=0; i<depth1; i++) {
for (int j=0; j<depth2; j++) {
for (int k=0; k<dim1; k++) {
for (int l=0; l<dim2; l++) {
matrix[i][j][k][l] = lower_bound + RAND_FLT()*distance_bounds;
}
}
}
}
}
else if (initialisation == NORMALIZED_XAVIER)
{
lower_bound = -sqrt(6/(double)(n_in + n_out));
distance_bounds = -2*lower_bound;
for (int i=0; i<depth1; i++) {
for (int j=0; j<depth2; j++) {
for (int k=0; k<dim1; k++) {
for (int l=0; l<dim2; l++) {
matrix[i][j][k][l] = lower_bound + RAND_FLT()*distance_bounds;
}
}
}
}
}
else if (initialisation == HE)
{
distance_bounds = 2/sqrt((double)n_in);
for (int i=0; i<depth1; i++) {
for (int j=0; j<depth2; j++) {
for (int k=0; k<dim1; k++) {
for (int l=0; l<dim2; l++) {
matrix[i][j][k][l] = randn()*distance_bounds;
}
}
}
}
}
else
{
printf_warning("Initialisation non reconnue dans 'initialisation_4d_matrix' \n");
}
}