Add 'finetuning' variable to the Network class

This commit is contained in:
julienChemillier 2023-05-26 20:46:58 +02:00
parent 771bfcaf70
commit fade0aa28d
13 changed files with 298 additions and 178 deletions

View File

@ -6,10 +6,11 @@
#include "../common/include/utils.h"
#include "include/initialisation.h"
#include "include/function.h"
#include "include/cnn.h"
#include "include/creation.h"
Network* create_network(int max_size, float learning_rate, int dropout, int initialisation, int input_width, int input_depth) {
Network* create_network(int max_size, float learning_rate, int dropout, int initialisation, int input_width, int input_depth, int finetuning) {
if (dropout < 0 || dropout > 100) {
printf_error("La probabilité de dropout n'est pas respecté, elle doit être comprise entre 0 et 100\n");
}
@ -19,6 +20,7 @@ Network* create_network(int max_size, float learning_rate, int dropout, int init
network->dropout = dropout;
network->initialisation = initialisation;
network->size = 1;
network->finetuning = finetuning;
network->input = (float****)nalloc(max_size, sizeof(float***));
network->input_z = (float****)nalloc(max_size, sizeof(float***));
network->kernel = (Kernel**)nalloc(max_size-1, sizeof(Kernel*));
@ -148,28 +150,46 @@ void add_convolution(Network* network, int kernel_size, int number_of_kernels, i
cnn->rows = input_depth;
cnn->columns = output_depth;
// Partie toujours initialisée
cnn->weights = (float****)nalloc(input_depth, sizeof(float***));
for (int i=0; i < input_depth; i++) {
cnn->weights[i] = (float***)nalloc(output_depth, sizeof(float**));
for (int j=0; j < output_depth; j++) {
cnn->weights[i][j] = (float**)nalloc(kernel_size, sizeof(float*));
for (int k=0; k < kernel_size; k++) {
cnn->weights[i][j][k] = (float*)nalloc(kernel_size, sizeof(float));
}
}
}
cnn->bias = (float***)nalloc(output_depth, sizeof(float**));
for (int i=0; i < output_depth; i++) {
cnn->bias[i] = (float**)nalloc(bias_size, sizeof(float*));
for (int j=0; j < bias_size; j++) {
cnn->bias[i][j] = (float*)nalloc(bias_size, sizeof(float));
}
}
// Partie initialisée que sous certaines conditions
if (network->finetuning == EVERYTHING) {
cnn->d_weights = (float****)nalloc(input_depth, sizeof(float***));
#ifdef ADAM_CNN_WEIGHTS
cnn->s_d_weights = (float****)nalloc(input_depth, sizeof(float***));
cnn->v_d_weights = (float****)nalloc(input_depth, sizeof(float***));
#endif
for (int i=0; i < input_depth; i++) {
cnn->weights[i] = (float***)nalloc(output_depth, sizeof(float**));
cnn->d_weights[i] = (float***)nalloc(output_depth, sizeof(float**));
#ifdef ADAM_CNN_WEIGHTS
cnn->s_d_weights[i] = (float***)nalloc(output_depth, sizeof(float**));
cnn->v_d_weights[i] = (float***)nalloc(output_depth, sizeof(float**));
#endif
for (int j=0; j < output_depth; j++) {
cnn->weights[i][j] = (float**)nalloc(kernel_size, sizeof(float*));
cnn->d_weights[i][j] = (float**)nalloc(kernel_size, sizeof(float*));
#ifdef ADAM_CNN_WEIGHTS
cnn->s_d_weights[i][j] = (float**)nalloc(kernel_size, sizeof(float*));
cnn->v_d_weights[i][j] = (float**)nalloc(kernel_size, sizeof(float*));
#endif
for (int k=0; k < kernel_size; k++) {
cnn->weights[i][j][k] = (float*)nalloc(kernel_size, sizeof(float));
cnn->d_weights[i][j][k] = (float*)nalloc(kernel_size, sizeof(float));
#ifdef ADAM_CNN_WEIGHTS
cnn->s_d_weights[i][j][k] = (float*)nalloc(kernel_size, sizeof(float));
@ -182,25 +202,23 @@ void add_convolution(Network* network, int kernel_size, int number_of_kernels, i
cnn->v_d_weights[i][j][k][l] = 0.;
#endif
}
}
}
}
cnn->bias = (float***)nalloc(output_depth, sizeof(float**));
cnn->d_bias = (float***)nalloc(output_depth, sizeof(float**));
#ifdef ADAM_CNN_BIAS
cnn->s_d_bias = (float***)nalloc(output_depth, sizeof(float**));
cnn->v_d_bias = (float***)nalloc(output_depth, sizeof(float**));
#endif
for (int i=0; i < output_depth; i++) {
cnn->bias[i] = (float**)nalloc(bias_size, sizeof(float*));
cnn->d_bias[i] = (float**)nalloc(bias_size, sizeof(float*));
#ifdef ADAM_CNN_BIAS
cnn->s_d_bias[i] = (float**)nalloc(bias_size, sizeof(float*));
cnn->v_d_bias[i] = (float**)nalloc(bias_size, sizeof(float*));
#endif
for (int j=0; j < bias_size; j++) {
cnn->bias[i][j] = (float*)nalloc(bias_size, sizeof(float));
cnn->d_bias[i][j] = (float*)nalloc(bias_size, sizeof(float));
#ifdef ADAM_CNN_BIAS
cnn->s_d_bias[i][j] = (float*)nalloc(bias_size, sizeof(float));
@ -215,6 +233,7 @@ void add_convolution(Network* network, int kernel_size, int number_of_kernels, i
}
}
}
}
int n_in = network->width[n-1]*network->width[n-1]*network->depth[n-1];
int n_out = network->width[n]*network->width[n]*network->depth[n];
@ -245,28 +264,19 @@ void add_dense(Network* network, int size_output, int activation) {
nn->size_input = size_input;
nn->size_output = size_output;
nn->bias = (float*)nalloc(size_output, sizeof(float));
nn->d_bias = (float*)nalloc(size_output, sizeof(float));
#ifdef ADAM_DENSE_BIAS
nn->s_d_bias = (float*)nalloc(size_output, sizeof(float));
nn->v_d_bias = (float*)nalloc(size_output, sizeof(float));
#endif
for (int i=0; i < size_output; i++) {
nn->d_bias[i] = 0.;
#ifdef ADAM_DENSE_BIAS
nn->s_d_bias[i] = 0.;
nn->v_d_bias[i] = 0.;
#endif
nn->weights = (float**)nalloc(size_input, sizeof(float*));
for (int i=0; i < size_input; i++) {
nn->weights[i] = (float*)nalloc(size_output, sizeof(float));
}
nn->weights = (float**)nalloc(size_input, sizeof(float*));
nn->bias = (float*)nalloc(size_output, sizeof(float));
nn->d_weights = (float**)nalloc(size_input, sizeof(float*));
#ifdef ADAM_DENSE_WEIGHTS
nn->s_d_weights = (float**)nalloc(size_input, sizeof(float*));
nn->v_d_weights = (float**)nalloc(size_input, sizeof(float*));
#endif
for (int i=0; i < size_input; i++) {
nn->weights[i] = (float*)nalloc(size_output, sizeof(float));
nn->d_weights[i] = (float*)nalloc(size_output, sizeof(float));
#ifdef ADAM_DENSE_WEIGHTS
nn->s_d_weights[i] = (float*)nalloc(size_output, sizeof(float));
@ -281,6 +291,20 @@ void add_dense(Network* network, int size_output, int activation) {
}
}
nn->d_bias = (float*)nalloc(size_output, sizeof(float));
#ifdef ADAM_DENSE_BIAS
nn->s_d_bias = (float*)nalloc(size_output, sizeof(float));
nn->v_d_bias = (float*)nalloc(size_output, sizeof(float));
#endif
for (int i=0; i < size_output; i++) {
nn->d_bias[i] = 0.;
#ifdef ADAM_DENSE_BIAS
nn->s_d_bias[i] = 0.;
nn->v_d_bias[i] = 0.;
#endif
}
initialisation_1d_matrix(network->initialisation, nn->bias, size_output, size_input, size_output);
initialisation_2d_matrix(network->initialisation, nn->weights, size_input, size_output, size_input, size_output);
create_a_line_input_layer(network, n, size_output);
@ -310,28 +334,22 @@ void add_dense_linearisation(Network* network, int size_output, int activation)
nn->size_input = size_input;
nn->size_output = size_output;
nn->bias = (float*)nalloc(size_output, sizeof(float));
nn->d_bias = (float*)nalloc(size_output, sizeof(float));
#ifdef ADAM_DENSE_BIAS
nn->s_d_bias = (float*)nalloc(size_output, sizeof(float));
nn->v_d_bias = (float*)nalloc(size_output, sizeof(float));
#endif
for (int i=0; i < size_output; i++) {
nn->d_bias[i] = 0.;
#ifdef ADAM_DENSE_BIAS
nn->s_d_bias[i] = 0.;
nn->v_d_bias[i] = 0.;
#endif
// Partie toujours initialisée
nn->weights = (float**)nalloc(size_input, sizeof(float*));
for (int i=0; i < size_input; i++) {
nn->weights[i] = (float*)nalloc(size_output, sizeof(float));
}
nn->weights = (float**)nalloc(size_input, sizeof(float*));
nn->bias = (float*)nalloc(size_output, sizeof(float));
// Partie initialisée que sous certaines conditions
if (network->finetuning <= NN_AND_LINEARISATION) {
nn->d_weights = (float**)nalloc(size_input, sizeof(float*));
#ifdef ADAM_DENSE_WEIGHTS
nn->s_d_weights = (float**)nalloc(size_input, sizeof(float*));
nn->v_d_weights = (float**)nalloc(size_input, sizeof(float*));
#endif
for (int i=0; i < size_input; i++) {
nn->weights[i] = (float*)nalloc(size_output, sizeof(float));
nn->d_weights[i] = (float*)nalloc(size_output, sizeof(float));
#ifdef ADAM_DENSE_WEIGHTS
nn->s_d_weights[i] = (float*)nalloc(size_output, sizeof(float));
@ -346,6 +364,20 @@ void add_dense_linearisation(Network* network, int size_output, int activation)
}
}
nn->d_bias = (float*)nalloc(size_output, sizeof(float));
#ifdef ADAM_DENSE_BIAS
nn->s_d_bias = (float*)nalloc(size_output, sizeof(float));
nn->v_d_bias = (float*)nalloc(size_output, sizeof(float));
#endif
for (int i=0; i < size_output; i++) {
nn->d_bias[i] = 0.;
#ifdef ADAM_DENSE_BIAS
nn->s_d_bias[i] = 0.;
nn->v_d_bias[i] = 0.;
#endif
}
}
initialisation_1d_matrix(network->initialisation, nn->bias, size_output, size_input, size_output);
initialisation_2d_matrix(network->initialisation, nn->weights, size_input, size_output, size_input, size_output);
create_a_line_input_layer(network, n, size_output);

View File

@ -3,6 +3,7 @@
#include <stdio.h>
#include "../common/include/memory_management.h"
#include "include/cnn.h"
#include "include/free.h"
@ -42,23 +43,43 @@ void free_convolution(Network* network, int pos) {
int r = k_pos->rows;
int bias_size = network->width[pos+1];
free_a_cube_input_layer(network, pos+1, network->depth[pos+1], network->width[pos+1]);
// Partie toujours initialisée (donc à libérer)
for (int i=0; i < c; i++) {
for (int j=0; j < bias_size; j++) {
gree(k_pos->bias[i][j], true);
}
gree(k_pos->bias[i], true);
}
gree(k_pos->bias, true);
for (int i=0; i < r; i++) {
for (int j=0; j < c; j++) {
for (int k=0; k < k_size; k++) {
gree(k_pos->weights[i][j][k], true);
}
gree(k_pos->weights[i][j], true);
}
gree(k_pos->weights[i], true);
}
gree(k_pos->weights, true);
// Partie initialisée que sous certaines conditions (donc ne pas toujours libérer)
if (network->finetuning == EVERYTHING) {
for (int i=0; i < c; i++) {
for (int j=0; j < bias_size; j++) {
gree(k_pos->d_bias[i][j], true);
#ifdef ADAM_CNN_BIAS
gree(k_pos->s_d_bias[i][j], true);
gree(k_pos->v_d_bias[i][j], true);
#endif
}
gree(k_pos->bias[i], true);
gree(k_pos->d_bias[i], true);
#ifdef ADAM_CNN_BIAS
gree(k_pos->s_d_bias[i], true);
gree(k_pos->v_d_bias[i], true);
#endif
}
gree(k_pos->bias, true);
gree(k_pos->d_bias, true);
#ifdef ADAM_CNN_BIAS
gree(k_pos->s_d_bias, true);
@ -68,33 +89,30 @@ void free_convolution(Network* network, int pos) {
for (int i=0; i < r; i++) {
for (int j=0; j < c; j++) {
for (int k=0; k < k_size; k++) {
gree(k_pos->weights[i][j][k], true);
gree(k_pos->d_weights[i][j][k], true);
#ifdef ADAM_CNN_WEIGHTS
gree(k_pos->s_d_weights[i][j][k], true);
gree(k_pos->v_d_weights[i][j][k], true);
#endif
}
gree(k_pos->weights[i][j], true);
gree(k_pos->d_weights[i][j], true);
#ifdef ADAM_CNN_WEIGHTS
gree(k_pos->s_d_weights[i][j], true);
gree(k_pos->v_d_weights[i][j], true);
#endif
}
gree(k_pos->weights[i], true);
gree(k_pos->d_weights[i], true);
#ifdef ADAM_CNN_WEIGHTS
gree(k_pos->s_d_weights[i], true);
gree(k_pos->v_d_weights[i], true);
#endif
}
gree(k_pos->weights, true);
gree(k_pos->d_weights, true);
#ifdef ADAM_CNN_WEIGHTS
gree(k_pos->s_d_weights, true);
gree(k_pos->v_d_weights, true);
#endif
}
gree(k_pos, true);
}
@ -103,22 +121,26 @@ void free_dense(Network* network, int pos) {
free_a_line_input_layer(network, pos+1);
Kernel_nn* k_pos = network->kernel[pos]->nn;
int dim = k_pos->size_input;
for (int i=0; i < dim; i++) {
gree(k_pos->weights[i], true);
}
gree(k_pos->weights, true);
gree(k_pos->bias, true);
for (int i=0; i < dim; i++) {
gree(k_pos->d_weights[i], true);
#ifdef ADAM_DENSE_WEIGHTS
gree(k_pos->s_d_weights[i], true);
gree(k_pos->v_d_weights[i], true);
#endif
}
gree(k_pos->weights, true);
gree(k_pos->d_weights, true);
#ifdef ADAM_DENSE_WEIGHTS
gree(k_pos->s_d_weights, true);
gree(k_pos->v_d_weights, true);
#endif
gree(k_pos->bias, true);
gree(k_pos->d_bias, true);
#ifdef ADAM_DENSE_BIAS
gree(k_pos->s_d_bias, true);
@ -132,27 +154,35 @@ void free_dense_linearisation(Network* network, int pos) {
free_a_line_input_layer(network, pos+1);
Kernel_nn* k_pos = network->kernel[pos]->nn;
int dim = k_pos->size_input;
// Partie toujours initialisée (donc à libérer)
for (int i=0; i < dim; i++) {
gree(k_pos->weights[i], true);
}
gree(k_pos->weights, true);
gree(k_pos->bias, true);
// Partie initialisée que sous certaines conditions (donc ne pas toujours libérer)
if (network->finetuning <= NN_AND_LINEARISATION) {
for (int i=0; i < dim; i++) {
gree(k_pos->d_weights[i], true);
#ifdef ADAM_DENSE_WEIGHTS
gree(k_pos->s_d_weights[i], true);
gree(k_pos->v_d_weights[i], true);
#endif
}
gree(k_pos->weights, true);
gree(k_pos->d_weights, true);
#ifdef ADAM_DENSE_WEIGHTS
gree(k_pos->s_d_weights, true);
gree(k_pos->v_d_weights, true);
#endif
gree(k_pos->bias, true);
gree(k_pos->d_bias, true);
#ifdef ADAM_DENSE_BIAS
gree(k_pos->s_d_bias, true);
gree(k_pos->v_d_bias, true);
#endif
}
gree(k_pos, true);
}

View File

@ -18,10 +18,10 @@
//* Options d'ADAM optimizer
//* Activer ou désactiver Adam sur les couches dense
//#define ADAM_DENSE_WEIGHTS
#define ADAM_DENSE_WEIGHTS
//#define ADAM_DENSE_BIAS
//* Activer ou désactiver Adam sur les couches convolutives
//#define ADAM_CNN_WEIGHTS
#define ADAM_CNN_WEIGHTS
//#define ADAM_CNN_BIAS

View File

@ -7,7 +7,7 @@
/*
* Créé un réseau qui peut contenir max_size couche (dont celle d'input et d'output)
*/
Network* create_network(int max_size, float learning_rate, int dropout, int initialisation, int input_width, int input_depth);
Network* create_network(int max_size, float learning_rate, int dropout, int initialisation, int input_width, int input_depth, int finetuning);
/*
* Créé et alloue de la mémoire à une couche de type input cube

View File

@ -8,29 +8,29 @@
/*
* Renvoie un réseau suivant l'architecture LeNet5
*/
Network* create_network_lenet5(float learning_rate, int dropout, int activation, int initialisation, int input_width, int input_depth);
Network* create_network_lenet5(float learning_rate, int dropout, int activation, int initialisation, int input_width, int input_depth, int finetuning);
/*
* Renvoie un réseau suivant l'architecture AlexNet
* C'est à dire en entrée 3x227x227 et une sortie de taille 'size_output'
*/
Network* create_network_alexnet(float learning_rate, int dropout, int activation, int initialisation, int size_output);
Network* create_network_alexnet(float learning_rate, int dropout, int activation, int initialisation, int size_output, int finetuning);
/*
* Renvoie un réseau suivant l'architecture VGG16 modifiée pour prendre en entrée 3x256x256
* et une sortie de taille 'size_output'
*/
Network* create_network_VGG16(float learning_rate, int dropout, int activation, int initialisation, int size_output);
Network* create_network_VGG16(float learning_rate, int dropout, int activation, int initialisation, int size_output, int finetuning);
/*
* Renvoie un réseau suivant l'architecture VGG16 originel pour prendre en entrée 3x227x227
* et une sortie de taille 1 000
*/
Network* create_network_VGG16_227(float learning_rate, int dropout, int activation, int initialisation);
Network* create_network_VGG16_227(float learning_rate, int dropout, int activation, int initialisation, int finetuning);
/*
* Renvoie un réseau sans convolution, similaire à celui utilisé dans src/dense
*/
Network* create_simple_one(float learning_rate, int dropout, int activation, int initialisation, int input_width, int input_depth);
Network* create_simple_one(float learning_rate, int dropout, int activation, int initialisation, int input_width, int input_depth, int finetuning);
#endif

View File

@ -67,6 +67,7 @@ typedef struct Network{
int dropout; // Probabilité d'abandon d'un neurone dans [0, 100] (entiers)
float learning_rate; // Taux d'apprentissage du réseau
int initialisation; // Id du type d'initialisation
int finetuning; // backpropagation: 0 sur tout; 1 sur dense et linéarisation; 2 sur dense
int max_size; // Taille du tableau contenant le réseau
int size; // Taille actuelle du réseau (size ≤ max_size)

View File

@ -7,8 +7,8 @@
#include "include/models.h"
Network* create_network_lenet5(float learning_rate, int dropout, int activation, int initialisation, int input_width, int input_depth) {
Network* network = create_network(8, learning_rate, dropout, initialisation, input_width, input_depth);
Network* create_network_lenet5(float learning_rate, int dropout, int activation, int initialisation, int input_width, int input_depth, int finetuning) {
Network* network = create_network(8, learning_rate, dropout, initialisation, input_width, input_depth, finetuning);
add_convolution(network, 5, 6, 1, 0, activation);
add_average_pooling(network, 2, 2, 0);
add_convolution(network, 5, 16, 1, 0, activation);
@ -19,8 +19,8 @@ Network* create_network_lenet5(float learning_rate, int dropout, int activation,
return network;
}
Network* create_network_alexnet(float learning_rate, int dropout, int activation, int initialisation, int size_output) {
Network* network = create_network(12, learning_rate, dropout, initialisation, 227, 3);
Network* create_network_alexnet(float learning_rate, int dropout, int activation, int initialisation, int size_output, int finetuning) {
Network* network = create_network(12, learning_rate, dropout, initialisation, 227, 3, finetuning);
add_convolution(network, 11, 96, 4, 0, activation);
add_average_pooling(network, 3, 2, 0);
add_convolution(network, 5, 256, 1, 2, activation);
@ -35,8 +35,8 @@ Network* create_network_alexnet(float learning_rate, int dropout, int activation
return network;
}
Network* create_network_VGG16(float learning_rate, int dropout, int activation, int initialisation, int size_output) {
Network* network = create_network(22, learning_rate, dropout, initialisation, 256, 3);
Network* create_network_VGG16(float learning_rate, int dropout, int activation, int initialisation, int size_output, int finetuning) {
Network* network = create_network(22, learning_rate, dropout, initialisation, 256, 3, finetuning);
add_convolution(network, 3, 64, 1, 1, activation); // Conv3-64
add_convolution(network, 3, 64, 1, 1, activation); // Conv3-64
add_average_pooling(network, 2, 2, 0); // Max Pool
@ -66,8 +66,8 @@ Network* create_network_VGG16(float learning_rate, int dropout, int activation,
return network;
}
Network* create_network_VGG16_227(float learning_rate, int dropout, int activation, int initialisation) {
Network* network = create_network(22, learning_rate, dropout, initialisation, 227, 3);
Network* create_network_VGG16_227(float learning_rate, int dropout, int activation, int initialisation, int finetuning) {
Network* network = create_network(22, learning_rate, dropout, initialisation, 227, 3, finetuning);
add_convolution(network, 3, 64, 1, 1, activation); // Conv3-64
add_convolution(network, 3, 64, 1, 1, activation); // Conv3-64
add_average_pooling(network, 2, 2, 0); // Max Pool
@ -97,8 +97,8 @@ Network* create_network_VGG16_227(float learning_rate, int dropout, int activati
return network;
}
Network* create_simple_one(float learning_rate, int dropout, int activation, int initialisation, int input_width, int input_depth) {
Network* network = create_network(3, learning_rate, dropout, initialisation, input_width, input_depth);
Network* create_simple_one(float learning_rate, int dropout, int activation, int initialisation, int input_width, int input_depth, int finetuning) {
Network* network = create_network(3, learning_rate, dropout, initialisation, input_width, input_depth, finetuning);
add_dense_linearisation(network, 80, activation);
add_dense(network, 10, SOFTMAX);
return network;

View File

@ -187,6 +187,7 @@ Network* read_network(char* filename) {
network->initialisation = initialisation;
(void) !fread(&dropout, sizeof(uint32_t), 1, ptr);
network->dropout = dropout;
network->finetuning = 0;
// Lecture de la taille de l'entrée des différentes matrices
network->width = (int*)nalloc(size, sizeof(int));
@ -268,28 +269,35 @@ Kernel* read_kernel(int type_couche, int output_width, FILE* ptr) {
float tmp;
cnn->bias = (float***)nalloc(cnn->columns, sizeof(float**));
for (int i=0; i < cnn->columns; i++) {
cnn->bias[i] = (float**)nalloc(output_width, sizeof(float*));
for (int j=0; j < output_width; j++) {
cnn->bias[i][j] = (float*)nalloc(output_width, sizeof(float));
for (int k=0; k < output_width; k++) {
(void) !fread(&tmp, sizeof(tmp), 1, ptr);
cnn->bias[i][j][k] = tmp;
}
}
}
cnn->d_bias = (float***)nalloc(cnn->columns, sizeof(float**));
#ifdef ADAM_CNN_BIAS
cnn->s_d_bias = (float***)nalloc(cnn->columns, sizeof(float**));
cnn->v_d_bias = (float***)nalloc(cnn->columns, sizeof(float**));
#endif
for (int i=0; i < cnn->columns; i++) {
cnn->bias[i] = (float**)nalloc(output_width, sizeof(float*));
cnn->d_bias[i] = (float**)nalloc(output_width, sizeof(float*));
#ifdef ADAM_CNN_BIAS
cnn->s_d_bias[i] = (float**)nalloc(output_width, sizeof(float*));
cnn->v_d_bias[i] = (float**)nalloc(output_width, sizeof(float*));
#endif
for (int j=0; j < output_width; j++) {
cnn->bias[i][j] = (float*)nalloc(output_width, sizeof(float));
cnn->d_bias[i][j] = (float*)nalloc(output_width, sizeof(float));
#ifdef ADAM_CNN_BIAS
cnn->s_d_bias[i][j] = (float*)nalloc(output_width, sizeof(float));
cnn->v_d_bias[i][j] = (float*)nalloc(output_width, sizeof(float));
#endif
for (int k=0; k < output_width; k++) {
(void) !fread(&tmp, sizeof(tmp), 1, ptr);
cnn->bias[i][j][k] = tmp;
cnn->d_bias[i][j][k] = 0.;
#ifdef ADAM_CNN_BIAS
cnn->s_d_bias[i][j][k] = 0.;
@ -299,36 +307,46 @@ Kernel* read_kernel(int type_couche, int output_width, FILE* ptr) {
}
}
cnn->weights = (float****)nalloc(cnn->rows, sizeof(float***));
for (int i=0; i < cnn->rows; i++) {
cnn->weights[i] = (float***)nalloc(cnn->columns, sizeof(float**));
for (int j=0; j < cnn->columns; j++) {
cnn->weights[i][j] = (float**)nalloc(cnn->k_size, sizeof(float*));
for (int k=0; k < cnn->k_size; k++) {
cnn->weights[i][j][k] = (float*)nalloc(cnn->k_size, sizeof(float));
for (int l=0; l < cnn->k_size; l++) {
(void) !fread(&tmp, sizeof(tmp), 1, ptr);
cnn->weights[i][j][k][l] = tmp;
}
}
}
}
cnn->d_weights = (float****)nalloc(cnn->rows, sizeof(float***));
#ifdef ADAM_CNN_WEIGHTS
cnn->s_d_weights = (float****)nalloc(cnn->rows, sizeof(float***));
cnn->v_d_weights = (float****)nalloc(cnn->rows, sizeof(float***));
#endif
for (int i=0; i < cnn->rows; i++) {
cnn->weights[i] = (float***)nalloc(cnn->columns, sizeof(float**));
cnn->d_weights[i] = (float***)nalloc(cnn->columns, sizeof(float**));
#ifdef ADAM_CNN_WEIGHTS
cnn->s_d_weights[i] = (float***)nalloc(cnn->columns, sizeof(float**));
cnn->v_d_weights[i] = (float***)nalloc(cnn->columns, sizeof(float**));
#endif
for (int j=0; j < cnn->columns; j++) {
cnn->weights[i][j] = (float**)nalloc(cnn->k_size, sizeof(float*));
cnn->d_weights[i][j] = (float**)nalloc(cnn->k_size, sizeof(float*));
#ifdef ADAM_CNN_WEIGHTS
cnn->s_d_weights[i][j] = (float**)nalloc(cnn->k_size, sizeof(float*));
cnn->v_d_weights[i][j] = (float**)nalloc(cnn->k_size, sizeof(float*));
#endif
for (int k=0; k < cnn->k_size; k++) {
cnn->weights[i][j][k] = (float*)nalloc(cnn->k_size, sizeof(float));
cnn->d_weights[i][j][k] = (float*)nalloc(cnn->k_size, sizeof(float));
#ifdef ADAM_CNN_WEIGHTS
cnn->s_d_weights[i][j][k] = (float*)nalloc(cnn->k_size, sizeof(float));
cnn->v_d_weights[i][j][k] = (float*)nalloc(cnn->k_size, sizeof(float));
#endif
for (int l=0; l < cnn->k_size; l++) {
(void) !fread(&tmp, sizeof(tmp), 1, ptr);
cnn->weights[i][j][k][l] = tmp;
cnn->d_weights[i][j][k][l] = 0.;
#ifdef ADAM_CNN_WEIGHTS
cnn->s_d_weights[i][j][k][l] = 0.;
@ -357,14 +375,17 @@ Kernel* read_kernel(int type_couche, int output_width, FILE* ptr) {
float tmp;
nn->bias = (float*)nalloc(nn->size_output, sizeof(float));
for (int i=0; i < nn->size_output; i++) {
(void) !fread(&tmp, sizeof(tmp), 1, ptr);
nn->bias[i] = tmp;
}
nn->d_bias = (float*)nalloc(nn->size_output, sizeof(float));
#ifdef ADAM_DENSE_BIAS
nn->s_d_bias = (float*)nalloc(nn->size_output, sizeof(float));
nn->v_d_bias = (float*)nalloc(nn->size_output, sizeof(float));
#endif
for (int i=0; i < nn->size_output; i++) {
(void) !fread(&tmp, sizeof(tmp), 1, ptr);
nn->bias[i] = tmp;
nn->d_bias[i] = 0.;
#ifdef ADAM_DENSE_BIAS
nn->s_d_bias[i] = 0.;
@ -373,21 +394,26 @@ Kernel* read_kernel(int type_couche, int output_width, FILE* ptr) {
}
nn->weights = (float**)nalloc(nn->size_input, sizeof(float*));
for (int i=0; i < nn->size_input; i++) {
nn->weights[i] = (float*)nalloc(nn->size_output, sizeof(float));
for (int j=0; j < nn->size_output; j++) {
(void) !fread(&tmp, sizeof(tmp), 1, ptr);
nn->weights[i][j] = tmp;
}
}
nn->d_weights = (float**)nalloc(nn->size_input, sizeof(float*));
#ifdef ADAM_DENSE_WEIGHTS
nn->s_d_weights = (float**)nalloc(nn->size_input, sizeof(float*));
nn->v_d_weights = (float**)nalloc(nn->size_input, sizeof(float*));
#endif
for (int i=0; i < nn->size_input; i++) {
nn->weights[i] = (float*)nalloc(nn->size_output, sizeof(float));
nn->d_weights[i] = (float*)nalloc(nn->size_output, sizeof(float));
#ifdef ADAM_DENSE_WEIGHTS
nn->s_d_weights[i] = (float*)nalloc(nn->size_output, sizeof(float));
nn->v_d_weights[i] = (float*)nalloc(nn->size_output, sizeof(float));
#endif
for (int j=0; j < nn->size_output; j++) {
(void) !fread(&tmp, sizeof(tmp), 1, ptr);
nn->weights[i][j] = tmp;
nn->d_weights[i][j] = 0.;
#ifdef ADAM_DENSE_WEIGHTS
nn->s_d_weights[i][j] = 0.;
@ -395,6 +421,7 @@ Kernel* read_kernel(int type_couche, int output_width, FILE* ptr) {
#endif
}
}
} else if (type_couche == POOLING) { // Cas du Pooling Layer
uint32_t pooling, linearisation, stride, padding;
(void) !fread(&linearisation, sizeof(linearisation), 1, ptr);

View File

@ -232,10 +232,10 @@ void train(int dataset_type, char* images_file, char* labels_file, char* data_di
Network* network;
if (!recover) {
if (dataset_type == 0) {
network = create_network_lenet5(LEARNING_RATE, 0, LEAKY_RELU, HE, input_width, input_depth);
network = create_network_lenet5(LEARNING_RATE, 0, LEAKY_RELU, HE, input_width, input_depth, finetuning);
//network = create_simple_one(LEARNING_RATE, 0, RELU, GLOROT, input_width, input_depth);
} else {
network = create_network_VGG16(LEARNING_RATE, 0, RELU, HE, dataset->numCategories);
network = create_network_VGG16(LEARNING_RATE, 0, RELU, HE, dataset->numCategories, finetuning);
#ifdef USE_MULTITHREADING
printf_warning("Utilisation de VGG16 avec multithreading. La quantité de RAM utilisée peut devenir excessive\n");

View File

@ -4,6 +4,7 @@
#include "include/update.h"
#include "include/struct.h"
#include "include/cnn.h"
#include "include/config.h"
@ -31,6 +32,9 @@ void update_weights(Network* network, Network* d_network) {
int output_width = network->width[i+1];
if (k_i->cnn) { // Convolution
if (network->finetuning != EVERYTHING) {
return; // Alors on a finit de backpropager
}
Kernel_cnn* cnn = k_i->cnn;
Kernel_cnn* d_cnn = dk_i->cnn;
int k_size = cnn->k_size;
@ -70,6 +74,9 @@ void update_weights(Network* network, Network* d_network) {
}
}
} else { // Matrice -> vecteur
if (network->finetuning == NN_ONLY) {
return; // Alors on a finit de backpropager
}
Kernel_nn* nn = k_i->nn;
Kernel_nn* d_nn = dk_i->nn;
@ -105,6 +112,9 @@ void update_bias(Network* network, Network* d_network) {
int output_depth = network->depth[i+1];
if (k_i->cnn) { // Convolution
if (network->finetuning != EVERYTHING) {
return; // Alors on a finit de backpropager
}
Kernel_cnn* cnn = k_i->cnn;
Kernel_cnn* d_cnn = dk_i->cnn;
@ -124,6 +134,11 @@ void update_bias(Network* network, Network* d_network) {
}
}
} else if (k_i->nn) { // Full connection
if (k_i->linearisation == DO_LINEARISE) {// Matrice -> vecteur
if (network->finetuning == NN_ONLY) {
return; // Alors on a finit de backpropager
}
}
Kernel_nn* nn = k_i->nn;
Kernel_nn* d_nn = dk_i->nn;
@ -157,6 +172,9 @@ void reset_d_weights(Network* network) {
int output_width = network->width[i+1];
if (k_i->cnn) { // Convolution
if (network->finetuning != EVERYTHING) {
continue; // On n'a pas initialisé donc on n'a pas besoin de reset
}
Kernel_cnn* cnn = k_i_1->cnn;
int k_size = cnn->k_size;
@ -180,6 +198,9 @@ void reset_d_weights(Network* network) {
}
}
} else { // Matrice -> vecteur
if (network->finetuning == NN_ONLY) {
continue; // On n'a pas initialisé donc on n'a pas besoin de reset
}
Kernel_nn* nn = k_i_1->nn;
int size_input = input_width*input_width*input_depth;
@ -206,6 +227,9 @@ void reset_d_bias(Network* network) {
int output_depth = network->depth[i+1];
if (k_i->cnn) { // Convolution
if (network->finetuning != EVERYTHING) {
continue; // On n'a pas initialisé donc on n'a pas besoin de reset
}
Kernel_cnn* cnn = k_i_1->cnn;
for (int a=0; a < output_depth; a++) {
@ -216,6 +240,11 @@ void reset_d_bias(Network* network) {
}
}
} else if (k_i->nn) { // Full connection
if (k_i->linearisation == DO_LINEARISE) {
if (network->finetuning == NN_ONLY) {
continue; // On n'a pas initialisé donc on n'a pas besoin de reset
}
}
Kernel_nn* nn = k_i_1->nn;
for (int a=0; a < output_width; a++) {

View File

@ -13,7 +13,7 @@
int main() {
printf("Création du réseau\n");
Network* network = create_network_lenet5(0, 0, 3, GLOROT, 32, 1);
Network* network = create_network_lenet5(0, 0, 3, GLOROT, 32, 1, 2); // Pas besoin d'initialiser toute la backprop
printf(GREEN "OK\n" RESET);
printf("Écriture du réseau\n");

View File

@ -8,12 +8,13 @@
#include "../src/cnn/include/models.h"
#include "../src/cnn/include/utils.h"
#include "../src/cnn/include/free.h"
#include "../src/cnn/include/cnn.h"
int main() {
Kernel* kernel;
printf("Création du réseau\n");
Network* network = create_network_lenet5(0, 0, 3, 2, 32, 1);
Network* network = create_network_lenet5(0, 0, 3, 2, 32, 1, NN_ONLY); // Pas besoin d'initialiser toute la backprop
printf(GREEN "OK\n" RESET);
printf("Architecture LeNet5:\n");

View File

@ -9,8 +9,8 @@
int main() {
printf("Création du réseau\n");
Network* network = create_network_lenet5(0, 0, 3, 2, 32, 1);
Network* network2 = create_network_lenet5(0, 0, 3, 2, 32, 1);
Network* network = create_network_lenet5(0, 0, 3, 2, 32, 1, 0);
Network* network2 = create_network_lenet5(0, 0, 3, 2, 32, 1, 0);
printf(GREEN "OK\n" RESET);
printf("Copie du réseau via copy_network\n");