Mise à jour du compte rendu

This commit is contained in:
augustin64 2022-06-17 15:54:42 +02:00
parent 828d7b83cc
commit dc4a3c5269

View File

@ -1,6 +1,6 @@
# Compte rendu
### **22 Avril 2022** [b30bedd](https://github.com/julienChemillier/TIPE/commit/b30bedd375e23ec7c2e5b10acf397a10885d8b5e)
### **22 Avril 2022** MNIST, premiers résultats. [b30bedd](https://github.com/julienChemillier/TIPE/commit/b30bedd375e23ec7c2e5b10acf397a10885d8b5e)
Le réseau minimise la fonction d'erreur (différence entre sortie voulue et obtenue).
Cela donne comme résultat une précision de 10.2% en moyenne soit à peine mieux qu'aléatoire.
Chaque image renvoie les mêmes poids sur la dernière couche.
@ -23,9 +23,9 @@ Voici un tableau comparant la fréquence d'apparition de chaque chiffre et l'act
<br/>
<br/>
### **25 Avril 2022** [698e72f](https://github.com/julienChemillier/TIPE/commit/698e72f56ed93aa6f5d9c81912ee98461f534410)
### **25 Avril 2022** Optimisation de la taille des époques. [698e72f](https://github.com/julienChemillier/TIPE/commit/698e72f56ed93aa6f5d9c81912ee98461f534410)
Le réseau donne des probabilités dont la somme est de 1 (grâce à softmax).
Un problème d'overfitting (sur-ajustement) apparait, résultant à de mauvais résultats sur des nouvelles données.
Un problème d'overfitting (sur-ajustement) apparaît, résultant à de mauvais résultats sur des nouvelles données.
Plus le réseau contient de couches, plus sa convergence vers des probabilités convenables est longue.
Voici un tableau comparant les exactitudes des différentes époques et les dimensions du réseau sur les 60 000 images (train) :
@ -37,3 +37,11 @@ Voici un tableau comparant les exactitudes des différentes époques et les dime
| 784x16x16x10 | 9.1% | 9.5% | 10.8% | 12.9% | 14.4% | 15.4% | 16.1% | 16.6% | 17.1% | 17.6% | 18.1% | 18.6% | 19.1% | 19.6% | 20.0% | 20.4% | 20.8% | 21.2% | 21.6% | 21.9% | 22.2% | 23.0% |
| 784x16x16x16x10 | 11.0% | 11.0% | 11.1% | 11.2% | 11.1% | 11.2% | 11.2% | 11.2% | 11.3% | 11.6% | 11.8% | 12.3% | 12.9% | 13.5% | 14.0% | 14.5% | 15.0% | 15.3% | 15.6% | 15.9% | 16.1% | 16.1% |
<br/>
<br/>
<br/>
### **14 Mai 2022** Implémentation du multithreading. [d40212d](https://github.com/julienChemillier/TIPE/commit/d40212d313b3e8260cb9f5527f261d5d86ad2d1b)
Le problème qui se posera dans le futur est celui de la puissance de calcul nécessaire.
Pour l'optimiser, il faut donc utiliser au maximum les ressources disponibles.