diff --git a/src/cnn/cnn.c b/src/cnn/cnn.c index ef48df9..03daa07 100644 --- a/src/cnn/cnn.c +++ b/src/cnn/cnn.c @@ -41,11 +41,12 @@ void forward_propagation(Network* network) { int n = network->size; float*** input; float*** output; + float*** output_a; Kernel* k_i; for (int i=0; i < n-1; i++) { // Transférer les informations de 'input' à 'output' k_i = network->kernel[i]; - output_a = network->input_a[i+1]; + output_a = network->input_z[i+1]; input = network->input[i]; input_depth = network->depth[i]; input_width = network->width[i]; @@ -56,7 +57,7 @@ void forward_propagation(Network* network) { if (k_i->cnn) { // Convolution make_convolution(k_i->cnn, input, output, output_width); - copy_input_to_input_a(outtput, output_a, outpu_width, output_width, ouput_depth); + copy_input_to_input_z(output, output_a, output_depth, output_width, output_width); choose_apply_function_matrix(activation, output, output_depth, output_width); } else if (k_i->nn) { // Full connection @@ -65,6 +66,7 @@ void forward_propagation(Network* network) { } else { // Matrice -> Vecteur make_dense_linearised(k_i->nn, input, output[0][0], input_depth, input_width, output_width); } + copy_input_to_input_z(output, output_a, 1, 1, output_width); choose_apply_function_vector(activation, output, output_width); } else { // Pooling @@ -74,6 +76,7 @@ void forward_propagation(Network* network) { } else { // Pooling sur une matrice make_average_pooling(input, output, activation/100, output_depth, output_width); } + copy_input_to_input_z(output, output_a, output_depth, output_width, output_width); } } } @@ -82,15 +85,12 @@ void backward_propagation(Network* network, float wanted_number) { printf_warning("Appel de backward_propagation, incomplet\n"); float* wanted_output = generate_wanted_output(wanted_number); int n = network->size; - //float loss = compute_mean_squared_error(network->input[n][0][0], wanted_output, network->width[n]); - // -> will it really be used ? int activation, input_depth, input_width, output_depth, output_width; float*** input; float*** output; Kernel* k_i; Kernel* k_i_1; - - rms_backward(network->input[n-1][0][0], wanted_output); // Backward sur la dernière colonne + // rms_backward(network->input[n-1][0][0], wanted_output); // Backward sur la dernière colonne for (int i=n-3; i >= 0; i--) { // Modifie 'k_i' à partir d'une comparaison d'informations entre 'input' et 'output' @@ -114,27 +114,40 @@ void backward_propagation(Network* network, float wanted_number) { } } else { // Pooling - backward_2d_pooling(input, output, input_width, output_width, input_depth) // Depth pour input et output a la même valeur + // backward_2d_pooling(input, output, input_width, output_width, input_depth) // Depth pour input et output a la même valeur } } free(wanted_output); } +void copy_input_to_input_z(float*** output, float*** output_a, int output_depth, int output_rows, int output_columns) { + for (int i=0; isize; - int input_depth, input_width, output_width; + int input_depth, input_width, output_depth, output_width; + Kernel* k_i; + Kernel* k_i_1; for (int i=0; i<(n-1); i++) { k_i = network->kernel[i]; k_i_1 = network->kernel[i+1]; input_depth = network->depth[i]; input_width = network->width[i]; + output_depth = network->depth[i+1]; output_width = network->width[i+1]; if (k_i->cnn) { // Convolution Kernel_cnn* cnn = k_i_1->cnn; int k_size = cnn->k_size; for (int a=0; aw[a][b][c][d] += cnn->d_w[a][b][c][d]; @@ -167,15 +180,18 @@ void update_weights(Network* network) { void update_bias(Network* network) { int n = network->size; - int output_width; + int output_width, output_depth; + Kernel* k_i; + Kernel* k_i_1; for (int i=0; i<(n-1); i++) { k_i = network->kernel[i]; k_i_1 = network->kernel[i+1]; output_width = network->width[i+1]; + output_depth = network->depth[i+1]; if (k_i->cnn) { // Convolution Kernel_cnn* cnn = k_i_1->cnn; - for (int a=0; abias[a][b][c] += cnn->d_bias[a][b][c]; diff --git a/src/cnn/creation.c b/src/cnn/creation.c index 8162b76..7a004ef 100644 --- a/src/cnn/creation.c +++ b/src/cnn/creation.c @@ -17,6 +17,7 @@ Network* create_network(int max_size, int learning_rate, int dropout, int initia network->initialisation = initialisation; network->size = 1; network->input = (float****)malloc(sizeof(float***)*max_size); + network->input_z = (float****)malloc(sizeof(float***)*max_size); network->kernel = (Kernel**)malloc(sizeof(Kernel*)*max_size); network->width = (int*)malloc(sizeof(int*)*max_size); network->depth = (int*)malloc(sizeof(int*)*max_size); @@ -28,6 +29,7 @@ Network* create_network(int max_size, int learning_rate, int dropout, int initia network->kernel[0]->nn = NULL; network->kernel[0]->cnn = NULL; create_a_cube_input_layer(network, 0, input_depth, input_dim); + create_a_cube_input_z_layer(network, 0, input_depth, input_dim); return network; } @@ -57,6 +59,18 @@ void create_a_cube_input_layer(Network* network, int pos, int depth, int dim) { network->depth[pos] = depth; } +void create_a_cube_input_z_layer(Network* network, int pos, int depth, int dim) { + network->input_z[pos] = (float***)malloc(sizeof(float**)*depth); + for (int i=0; i < depth; i++) { + network->input_z[pos][i] = (float**)malloc(sizeof(float*)*dim); + for (int j=0; j < dim; j++) { + network->input_z[pos][i][j] = (float*)malloc(sizeof(float)*dim); + } + } + network->width[pos] = dim; + network->depth[pos] = depth; +} + void create_a_line_input_layer(Network* network, int pos, int dim) { network->input[pos] = (float***)malloc(sizeof(float**)); network->input[pos][0] = (float**)malloc(sizeof(float*)); @@ -65,7 +79,15 @@ void create_a_line_input_layer(Network* network, int pos, int dim) { network->depth[pos] = 1; } -void add_2d_average_pooling(Network* network, int dim_ouput) { +void create_a_line_input_z_layer(Network* network, int pos, int dim) { + network->input_z[pos] = (float***)malloc(sizeof(float**)); + network->input_z[pos][0] = (float**)malloc(sizeof(float*)); + network->input_z[pos][0][0] = (float*)malloc(sizeof(float)*dim); + network->width[pos] = dim; + network->depth[pos] = 1; +} + +void add_2d_average_pooling(Network* network, int dim_output) { int n = network->size; int k_pos = n-1; int dim_input = network->width[k_pos]; @@ -73,8 +95,8 @@ void add_2d_average_pooling(Network* network, int dim_ouput) { printf("Impossible de rajouter une couche d'average pooling, le réseau est déjà plein\n"); return; } - int kernel_size = dim_input/dim_ouput; - if (dim_input%dim_ouput != 0) { + int kernel_size = dim_input/dim_output; + if (dim_input%dim_output != 0) { printf("Erreur de dimension dans l'average pooling\n"); return; } @@ -82,6 +104,7 @@ void add_2d_average_pooling(Network* network, int dim_ouput) { network->kernel[k_pos]->nn = NULL; network->kernel[k_pos]->activation = 100*kernel_size; // Ne contient pas de fonction d'activation create_a_cube_input_layer(network, n, network->depth[n-1], network->width[n-1]/2); + create_a_cube_input_z_layer(network, n, network->depth[n-1], network->width[n-1]/2); network->size++; } @@ -137,6 +160,7 @@ void add_convolution(Network* network, int depth_output, int dim_output, int act } } create_a_cube_input_layer(network, n, depth_output, bias_size); + create_a_cube_input_z_layer(network, n, depth_output, bias_size); int n_int = network->width[n-1]*network->width[n-1]*network->depth[n-1]; int n_out = network->width[n]*network->width[n]*network->depth[n]; /* Not currently used @@ -174,6 +198,7 @@ void add_dense(Network* network, int output_units, int activation) { nn->last_d_weights[i] = (float*)malloc(sizeof(float)*output_units); } create_a_line_input_layer(network, n, output_units); + create_a_line_input_z_layer(network, n, output_units); /* Not currently used initialisation_1d_matrix(network->initialisation, nn->bias, output_units, output_units+input_units); initialisation_1d_matrix(ZERO, nn->d_bias, output_units, output_units+input_units); @@ -217,6 +242,7 @@ void add_dense_linearisation(Network* network, int output_units, int activation) initialisation_2d_matrix(network->initialisation, nn->weights, input_units, output_units, output_units+input_units); initialisation_2d_matrix(ZERO, nn->d_weights, input_units, output_units, output_units+input_units); */ create_a_line_input_layer(network, n, output_units); + create_a_line_input_z_layer(network, n, output_units); network->size++; } \ No newline at end of file diff --git a/src/cnn/free.c b/src/cnn/free.c index 5866341..c4092b6 100644 --- a/src/cnn/free.c +++ b/src/cnn/free.c @@ -7,16 +7,22 @@ void free_a_cube_input_layer(Network* network, int pos, int depth, int dim) { for (int i=0; i < depth; i++) { for (int j=0; j < dim; j++) { free(network->input[pos][i][j]); + free(network->input_z[pos][i][j]); } free(network->input[pos][i]); + free(network->input_z[pos][i]); } free(network->input[pos]); + free(network->input_z[pos]); } void free_a_line_input_layer(Network* network, int pos) { free(network->input[pos][0][0]); + free(network->input_z[pos][0][0]); free(network->input[pos][0]); + free(network->input_z[pos][0]); free(network->input[pos]); + free(network->input_z[pos]); } void free_2d_average_pooling(Network* network, int pos) { @@ -114,6 +120,7 @@ void free_network_creation(Network* network) { free(network->depth); free(network->kernel); free(network->input); + free(network->input_z); free(network); } diff --git a/src/cnn/function.c b/src/cnn/function.c index 9e1b0b0..c89df78 100644 --- a/src/cnn/function.c +++ b/src/cnn/function.c @@ -100,25 +100,3 @@ void choose_apply_function_vector(int activation, float*** input, int dim) { printf("Erreur, fonction d'activation inconnue (choose_apply_function_vector): %d\n", activation); } } - -void* get_function_activation(int activation) { - if (activation == RELU) { - return relu; - } else if (activation == -RELU) { - return relu_derivative; - } else if (activation == SIGMOID) { - return sigmoid; - } else if (activation == -SIGMOID) { - return sigmoid_derivative - } else if (activation == SOFTMAX) { - printf("Erreur, impossible de renvoyer la fonction softmax"); - } else if (activation == -SOFTMAX) { - printf("Erreur, impossible de renvoyer la dérivée de la fonction softmax"); - } else if (activation == TANH) { - return tanh_; - } else if (activation == -TANH) { - return tanh_derivative; - } else { - printf("Erreur, fonction d'activation inconnue (choose_apply_function_vector): %d\n", activation); - } -} \ No newline at end of file diff --git a/src/cnn/include/cnn.h b/src/cnn/include/cnn.h index 5fca4d6..72b7f33 100644 --- a/src/cnn/include/cnn.h +++ b/src/cnn/include/cnn.h @@ -24,6 +24,11 @@ void forward_propagation(Network* network); */ void backward_propagation(Network* network, float wanted_number); +/* +* Copie les données de output dans output_a (Sachant que les deux matrices ont les mêmes dimensions) +*/ +void copy_input_to_input_z(float*** output, float*** output_a, int output_depth, int output_rows, int output_columns); + /* * Bascule les données de d_weights dans weights */ @@ -33,7 +38,6 @@ void update_weights(Network* network); * Bascule les données de d_bias dans bias */ void update_bias(Network* network); - /* * Renvoie l'erreur du réseau neuronal pour une sortie (RMS) */ diff --git a/src/cnn/include/creation.h b/src/cnn/include/creation.h index f18378c..081a8b2 100644 --- a/src/cnn/include/creation.h +++ b/src/cnn/include/creation.h @@ -17,7 +17,12 @@ Network* create_network_lenet5(int learning_rate, int dropout, int activation, i /* * Créé et alloue de la mémoire à une couche de type input cube */ -void create_a_cube_input_layer(Network* network, int pos, int depth, int dim); // CHECKED +void create_a_cube_input_layer(Network* network, int pos, int depth, int dim); + +/* +* Créé et alloue de la mémoire à une couche de type input_z cube +*/ +void create_a_cube_input_z_layer(Network* network, int pos, int depth, int dim); /* * Créé et alloue de la mémoire à une couche de type ligne @@ -27,7 +32,7 @@ void create_a_line_input_layer(Network* network, int pos, int dim); /* * Ajoute au réseau une couche d'average pooling valide de dimension dim*dim */ -void add_2d_average_pooling(Network* network, int dim_ouput); +void add_2d_average_pooling(Network* network, int dim_output); /* * Ajoute au réseau une couche de convolution dim*dim et initialise les kernels diff --git a/src/cnn/include/function.h b/src/cnn/include/function.h index 50f89c6..78189af 100644 --- a/src/cnn/include/function.h +++ b/src/cnn/include/function.h @@ -1,6 +1,8 @@ #ifndef DEF_FUNCTION_H #define DEF_FUNCTION_H + +typedef float (*returnFunctionType)(float, float); // Les dérivées sont l'opposé #define TANH 1 #define SIGMOID 2 @@ -44,9 +46,4 @@ void choose_apply_function_matrix(int activation, float*** input, int depth, int */ void choose_apply_function_vector(int activation, float*** input, int dim); -/* -* Renvoie un pointeur vers la fonction d'activation correspondante -*/ -void* get_function_activation(int activation) - #endif \ No newline at end of file diff --git a/src/cnn/include/struct.h b/src/cnn/include/struct.h index 47ecd6b..5e4a6bf 100644 --- a/src/cnn/include/struct.h +++ b/src/cnn/include/struct.h @@ -42,6 +42,7 @@ typedef struct Network{ int* depth; // depth[size] Kernel** kernel; // kernel[size], contient tous les kernels float**** input; // Tableau de toutes les couches du réseau input[size][couche->depth][couche->width][couche->width] + float**** input_z; // Même tableau que input mais ne contient paas la dernière fonction d'activation à chaque ligne } Network; #endif \ No newline at end of file