mirror of
https://github.com/augustin64/projet-tipe
synced 2025-01-23 23:26:25 +01:00
Add copy_network and patch_network
This commit is contained in:
parent
6532ad2545
commit
ce947fe91d
@ -15,13 +15,15 @@ float sigmoid(float x);
|
||||
float sigmoid_derivative(float x);
|
||||
float leaky_ReLU(float x);
|
||||
float leaky_ReLU_derivative(float x);
|
||||
void network_creation(Network* network_neuronal, int* neurons_per_layer, int nb_layers);
|
||||
void deletion_of_network(Network* network_neuronal);
|
||||
void forward_propagation(Network* network_neuronal);
|
||||
int* desired_output_creation(Network* network_neuronal, int wanted_number);
|
||||
void backward_propagation(Network* network_neuronal, int* desired_output);
|
||||
void network_modification(Network* network_neuronal, uint32_t nb_modifs);
|
||||
void network_initialisation(Network* network_neuronal);
|
||||
void network_creation(Network* network, int* neurons_per_layer, int nb_layers);
|
||||
void deletion_of_network(Network* network);
|
||||
void forward_propagation(Network* network);
|
||||
int* desired_output_creation(Network* network, int wanted_number);
|
||||
void backward_propagation(Network* network, int* desired_output);
|
||||
void network_modification(Network* network, uint32_t nb_modifs);
|
||||
void network_initialisation(Network* network);
|
||||
void patch_network(Network* network, Network* delta, uint32_t nb_modifs);
|
||||
Network* copy_network(Network* network);
|
||||
float loss_computing(Network* network, int numero_voulu);
|
||||
|
||||
#endif
|
||||
|
@ -92,6 +92,7 @@ void deletion_of_network(Network* network) {
|
||||
}
|
||||
free(layer->neurons); // On libère enfin la liste des neurones de la couche
|
||||
}
|
||||
free(network->layers);
|
||||
free(network); // Pour finir, on libère le réseau neuronal contenant la liste des couches
|
||||
}
|
||||
|
||||
@ -225,22 +226,22 @@ void network_modification(Network* network, uint32_t nb_modifs) {
|
||||
else if (neuron->bias < -MAX_RESEAU)
|
||||
neuron->bias = -MAX_RESEAU;
|
||||
|
||||
if (i!=network->nb_layers-1) {
|
||||
for (int k=0; k < network->layers[i+1]->nb_neurons; k++) {
|
||||
if (neuron->weights[k] != 0 && PRINT_POIDS)
|
||||
printf("C %d\tN %d -> %d\tp: %f \tDp: %f\n", i, j, k, neuron->weights[k], (LEARNING_RATE/nb_modifs) * neuron->back_weights[k]);
|
||||
neuron->weights[k] -= (LEARNING_RATE/nb_modifs) * neuron->back_weights[k]; // On modifie le poids du neurone à partir des données de la propagation en arrière
|
||||
neuron->back_weights[k] = 0;
|
||||
if (i != network->nb_layers-1) {
|
||||
for (int k=0; k < network->layers[i+1]->nb_neurons; k++) {
|
||||
if (neuron->weights[k] != 0 && PRINT_POIDS)
|
||||
printf("C %d\tN %d -> %d\tp: %f \tDp: %f\n", i, j, k, neuron->weights[k], (LEARNING_RATE/nb_modifs) * neuron->back_weights[k]);
|
||||
neuron->weights[k] -= (LEARNING_RATE/nb_modifs) * neuron->back_weights[k]; // On modifie le poids du neurone à partir des données de la propagation en arrière
|
||||
neuron->back_weights[k] = 0;
|
||||
|
||||
if (neuron->weights[k] > MAX_RESEAU) {
|
||||
neuron->weights[k] = MAX_RESEAU;
|
||||
printf("Erreur, max du réseau atteint");
|
||||
if (neuron->weights[k] > MAX_RESEAU) {
|
||||
neuron->weights[k] = MAX_RESEAU;
|
||||
printf("Erreur, max du réseau atteint");
|
||||
}
|
||||
else if (neuron->weights[k] < -MAX_RESEAU) {
|
||||
neuron->weights[k] = -MAX_RESEAU;
|
||||
printf("Erreur, min du réseau atteint");
|
||||
}
|
||||
}
|
||||
else if (neuron->weights[k] < -MAX_RESEAU) {
|
||||
neuron->weights[k] = -MAX_RESEAU;
|
||||
printf("Erreur, min du réseau atteint");
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -286,7 +287,66 @@ void network_initialisation(Network* network) {
|
||||
}
|
||||
}
|
||||
|
||||
void patch_network(Network* network, Network* delta, uint32_t nb_modifs) {
|
||||
// Les deux réseaux donnés sont supposés de même dimensions
|
||||
Neuron* neuron;
|
||||
Neuron* dneuron;
|
||||
|
||||
for (int i=0; i < network->nb_layers; i++) {
|
||||
for (int j=0; j < network->layers[i]->nb_neurons; j++) {
|
||||
neuron = network->layers[i]->neurons[j];
|
||||
dneuron = delta->layers[i]->neurons[j];
|
||||
neuron->bias -= (LEARNING_RATE/nb_modifs) * dneuron->back_bias;
|
||||
dneuron->back_bias = 0;
|
||||
|
||||
if (i != network->nb_layers-1) {
|
||||
for (int k=0; k < network->layers[i+1]->nb_neurons; k++) {
|
||||
neuron->weights[k] -= (LEARNING_RATE/nb_modifs) * dneuron->back_weights[k]; // On modifie le poids du neurone à partir des données de la propagation en arrière
|
||||
dneuron->back_weights[k] = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Network* copy_network(Network* network) {
|
||||
// Renvoie une copie modifiable d'un réseau de neurones
|
||||
Network* network2 = (Network*)malloc(sizeof(Network));
|
||||
Layer* layer;
|
||||
Neuron* neuron1;
|
||||
Neuron* neuron;
|
||||
|
||||
network2->nb_layers = network->nb_layers;
|
||||
network2->layers = (Layer**)malloc(sizeof(Layer*)*network->nb_layers);
|
||||
for (int i=0; i < network2->nb_layers; i++) {
|
||||
layer = (Layer*)malloc(sizeof(Layer));
|
||||
layer->nb_neurons = network->layers[i]->nb_neurons;
|
||||
layer->neurons = (Neuron**)malloc(sizeof(Neuron*)*layer->nb_neurons);
|
||||
for (int j=0; j < layer->nb_neurons; j++) {
|
||||
neuron = (Neuron*)malloc(sizeof(Neuron));
|
||||
|
||||
neuron1 = network->layers[i]->neurons[j];
|
||||
neuron->bias = neuron1->bias;
|
||||
neuron->z = neuron1->z;
|
||||
neuron->back_bias = neuron1->back_bias;
|
||||
neuron->last_back_bias = neuron1->last_back_bias;
|
||||
if (i != network2->nb_layers-1) {
|
||||
(void)network2->layers[i+1]->nb_neurons;
|
||||
neuron->weights = (float*)malloc(sizeof(float)*network->layers[i+1]->nb_neurons);
|
||||
neuron->back_weights = (float*)malloc(sizeof(float)*network->layers[i+1]->nb_neurons);
|
||||
neuron->last_back_weights = (float*)malloc(sizeof(float)*network->layers[i+1]->nb_neurons);
|
||||
for (int k=0; k < network->layers[i+1]->nb_neurons; k++) {
|
||||
neuron->weights[k] = neuron1->weights[k];
|
||||
neuron->back_weights[k] = neuron1->back_weights[k];
|
||||
neuron->last_back_weights[k] = neuron1->last_back_weights[k];
|
||||
}
|
||||
}
|
||||
layer->neurons[j] = neuron;
|
||||
}
|
||||
network2->layers[i] = layer;
|
||||
}
|
||||
return network2;
|
||||
}
|
||||
|
||||
|
||||
float loss_computing(Network* network, int numero_voulu){
|
||||
@ -306,4 +366,4 @@ float loss_computing(Network* network, int numero_voulu){
|
||||
}
|
||||
|
||||
return erreur;
|
||||
}
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user