mirror of
https://github.com/augustin64/projet-tipe
synced 2025-01-23 23:26:25 +01:00
Merge branch 'main' of https://github.com/julienChemillier/TIPE.git
This commit is contained in:
commit
c8b369f862
@ -5,11 +5,12 @@
|
||||
- [Medium](https://medium.com/@14prakash/back-propagation-is-very-simple-who-made-it-complicated-97b794c97e5c)
|
||||
- [Simeon Kostadinov: Understanding Backpropagation](https://towardsdatascience.com/understanding-backpropagation-algorithm-7bb3aa2f95fd)
|
||||
- [Tobias Hill: Gradient Descent](https://towardsdatascience.com/part-2-gradient-descent-and-backpropagation-bf90932c066a)
|
||||
- [Adam Optimizer](https://arxiv.org/pdf/1412.6980.pdf)
|
||||
|
||||
## Convolutional Neural Network
|
||||
|
||||
- [The Independent Code](https://www.youtube.com/watch?v=Lakz2MoHy6o)
|
||||
|
||||
|
||||
## Jeux de données
|
||||
- [MNIST](http://yann.lecun.com/exdb/mnist/)
|
||||
- [ImageNet](https://www.image-net.org/index.php)
|
||||
|
@ -1,3 +1,5 @@
|
||||
#include "struct.h"
|
||||
|
||||
#ifndef DEF_UPDATE_H
|
||||
#define DEF_UPDATE_H
|
||||
|
||||
|
@ -11,14 +11,14 @@
|
||||
#define purple printf("\033[0;35m")
|
||||
#define reset_color printf("\033[0m")
|
||||
|
||||
void print_kernel_cnn(Kernel_cnn* k, int depth_input, int dim_input, int depth_output, int dim_output) {
|
||||
void print_kernel_cnn(Kernel_cnn* ker, int depth_input, int dim_input, int depth_output, int dim_output) {
|
||||
int k_size = dim_input - dim_output + 1;
|
||||
// print bias
|
||||
green;
|
||||
for (int i=0; i<depth_output; i++) {
|
||||
for (int j=0; j<dim_output; j++) {
|
||||
for (int k=0; k<dim_output; k++) {
|
||||
printf("%.2f", k->bias[i][j][k]);
|
||||
printf("%.2f", ker->bias[i][j][k]);
|
||||
}
|
||||
print_space;
|
||||
}
|
||||
@ -29,12 +29,12 @@ void print_kernel_cnn(Kernel_cnn* k, int depth_input, int dim_input, int depth_o
|
||||
|
||||
//print weights
|
||||
red;
|
||||
for (int i=0; i<; i++) {
|
||||
for (int i=0; i<depth_input; i++) {
|
||||
printf("------Line %d-----\n", i);
|
||||
for (int j=0; j<; j++) {
|
||||
for (int k=0; k<; k++) {
|
||||
for (int l=0; l<; l++) {
|
||||
printf("%.2f", k->w[i][j][k][l]);
|
||||
for (int j=0; j<depth_output; j++) {
|
||||
for (int k=0; k<k_size; k++) {
|
||||
for (int l=0; l<k_size; l++) {
|
||||
printf("%.2f", ker->w[i][j][k][l]);
|
||||
}
|
||||
print_space;
|
||||
}
|
||||
@ -56,11 +56,11 @@ void print_pooling(int size) {
|
||||
print_dspace;
|
||||
}
|
||||
|
||||
void print_kernel_nn(Kernel_nn* k, int size_input, int size_output) {
|
||||
void print_kernel_nn(Kernel_nn* ker, int size_input, int size_output) {
|
||||
// print bias
|
||||
green;
|
||||
for (int i=0; i<size_output; i++) {
|
||||
printf("%.2f ", k->bias[i]);
|
||||
printf("%.2f ", ker->bias[i]);
|
||||
}
|
||||
print_dspace;
|
||||
reset_color;
|
||||
@ -69,7 +69,7 @@ void print_kernel_nn(Kernel_nn* k, int size_input, int size_output) {
|
||||
red;
|
||||
for (int i=0; i<size_output; i++) {
|
||||
for (int j=0; j<size_input; j++) {
|
||||
printf("%.2f ", k->weights[j][i]);
|
||||
printf("%.2f ", ker->weights[j][i]);
|
||||
}
|
||||
print_space;
|
||||
}
|
||||
@ -97,17 +97,18 @@ void print_input(float*** input, int depth, int dim) {
|
||||
void print_cnn(Network* network) {
|
||||
int n = network->size;
|
||||
int input_depth, input_width, output_depth, output_width;
|
||||
//float*** output;
|
||||
//float*** input;
|
||||
Kernel* k_i;
|
||||
for (int i=0; i<(n-1); i++) {
|
||||
input = network->input[i];
|
||||
//input = network->input[i];
|
||||
input_depth = network->depth[i];
|
||||
input_width = network->width[i];
|
||||
output = network->input[i+1];
|
||||
//output = network->input[i+1];
|
||||
output_depth = network->depth[i+1];
|
||||
output_width = network->width[i+1];
|
||||
k_i = network->kernel[i];
|
||||
|
||||
print_input(input, input_depth, input_width);
|
||||
|
||||
if (k_i->cnn) { // Convolution
|
||||
print_kernel_cnn(k_i->cnn, input_depth, input_width, output_depth, output_width);
|
||||
@ -119,5 +120,4 @@ void print_cnn(Network* network) {
|
||||
print_pooling(input_width - output_width +1);
|
||||
}
|
||||
}
|
||||
print_input(input[n-1], network->depth[n-1], network->width[n-1]);
|
||||
}
|
Loading…
Reference in New Issue
Block a user