mirror of
https://github.com/augustin64/projet-tipe
synced 2025-01-24 07:36:24 +01:00
Changes in matrix module
This commit is contained in:
parent
cc283be86e
commit
c44cd6e8f8
35
matrix_2d.c
35
matrix_2d.c
@ -1,12 +1,3 @@
|
||||
/*
|
||||
Version du module Matrice avec des matrices 2d
|
||||
Une version 3d doit s'inspirer de celle-ci
|
||||
*/
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
#include <stdint.h>
|
||||
#include <stdlib.h>
|
||||
#include <stdio.h>
|
||||
@ -21,6 +12,18 @@ typedef struct Matrix {
|
||||
|
||||
} Matrix;
|
||||
|
||||
// Mis ici jusqu'à le rassemblement des fichiers
|
||||
typedef struct Neuron{
|
||||
float* weights; // Liste de tous les poids des arêtes sortants du neurone
|
||||
float bias; // Caractérise le bias du neurone
|
||||
float z; // Sauvegarde des calculs faits sur le neurone (programmation dynamique)
|
||||
|
||||
float *back_weights; // Changement des poids sortants lors de la backpropagation
|
||||
float *last_back_weights; // Dernier changement de d_poid_sortants
|
||||
float back_bias; // Changement du bias lors de la backpropagation
|
||||
float last_back_bias; // Dernier changement de back_bias
|
||||
} Neuron;
|
||||
|
||||
|
||||
|
||||
|
||||
@ -480,14 +483,16 @@ void average_pooling_step_forward(Matrix** layer_input, Matrix*** layer_kernel,
|
||||
}
|
||||
|
||||
|
||||
void reshape_step_forward(Matrix** layer_input, Matrix*** layer_kernel, Matrix** layer_bias, Matrix** layer_output, int len_layer, int depth_kernel, int stride) {
|
||||
void reshape_step_forward(Matrix** layer_input, Neuron** output, int len_layer) {
|
||||
/* Effectue une étape de la forward-propagation
|
||||
en redimensionnant la matrice */
|
||||
for (int i=0; i < depth_kernel; i++) {
|
||||
copy_matrix(layer_bias[i], layer_output[i]);
|
||||
|
||||
for (int j=0; j < len_layer; j++) {
|
||||
average_pooling_matrix(layer_input[j], layer_kernel[i][j], stride, layer_output[j]);
|
||||
int cpt = 0;
|
||||
for (int i=0; i < len_layer; i++) {
|
||||
for (int j=0; j < layer_input[i]->rows; j++) {
|
||||
for (int k=0; k < layer_input[i]->columns; k++) {
|
||||
output[cpt]->z = layer_input[i]->value[j][k];
|
||||
cpt++;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
467
matrix_3d.c
Normal file
467
matrix_3d.c
Normal file
@ -0,0 +1,467 @@
|
||||
#include <stdint.h>
|
||||
#include <stdlib.h>
|
||||
#include <stdio.h>
|
||||
#include <float.h>
|
||||
#include <math.h>
|
||||
|
||||
|
||||
typedef struct Matrix {
|
||||
int depths; // Nombre de couches de la matrice
|
||||
int rows; // Nombre de lignes de la matrice
|
||||
int columns; // Nombre de colonnes de la matrice
|
||||
float*** value; // Tableau 2d comportant les valeurs de matrice
|
||||
|
||||
} Matrix;
|
||||
|
||||
float exp_float(float a);
|
||||
float max_float(float a, float b);
|
||||
float min_float(float a, float b);
|
||||
Matrix* create_matrix(int nb_layers, int nb_rows, int nb_columns);
|
||||
void uniformise_matrix(Matrix* m, float x);
|
||||
float max_in_matrix(Matrix* m);
|
||||
void free_matrix(Matrix* m);
|
||||
float number_from_matrix(Matrix* m);
|
||||
void product_of_a_scalar_matrix(Matrix* m, float scalar);
|
||||
void sum_of_a_scalar_matrix(Matrix* m, float scalar);
|
||||
Matrix* copy_matrix(Matrix* m);
|
||||
Matrix* apply_function_new_matrix(Matrix* m, float (*f)(float));
|
||||
void apply_function_matrix(Matrix* m, float (*f)(float));
|
||||
Matrix* add_matrix(Matrix* m1, Matrix* m2);
|
||||
Matrix* product_matrix(Matrix* m1, Matrix* m2);
|
||||
void max_pooling_matrix(Matrix* m_in, Matrix* kernel, int stride, Matrix* m_out);
|
||||
void min_pooling_matrix(Matrix* m_in, Matrix* kernel, int stride, Matrix* m_out);
|
||||
void average_pooling_matrix(Matrix* m_in, Matrix* kernel, int stride, Matrix* m_out);
|
||||
void valid_cross_correlation_matrix(Matrix* m_in, Matrix* kernel, int stride, Matrix* m_out);
|
||||
void full_cross_correlation_matrix(Matrix* m_in, Matrix* kernel, int stride, Matrix* m_out);
|
||||
void softmax_matrix(Matrix* m);
|
||||
float quadratic_cost_matrix(Matrix* m, int i_number, int j_number, int k_number);
|
||||
void rotation_180_matrix(Matrix* m);
|
||||
|
||||
|
||||
|
||||
float exp_float(float a) {
|
||||
/* Renvoie l'exponentiel d'un flotant '*/
|
||||
return (float)exp(a);
|
||||
}
|
||||
|
||||
|
||||
float max_float(float a, float b) {
|
||||
/* Renvoie le max entre les deux flotants */
|
||||
return a>b?a:b;
|
||||
}
|
||||
|
||||
|
||||
float min_float(float a, float b) {
|
||||
/* Renvoie le min entre les deux flotants */
|
||||
return a<b?a:b;
|
||||
}
|
||||
|
||||
|
||||
Matrix* create_matrix(int nb_layers, int nb_rows, int nb_columns) {
|
||||
/* Créé une matrice en lui allouant de la mémoire */
|
||||
Matrix* m = malloc(sizeof(Matrix));
|
||||
m->rows = nb_rows;
|
||||
m->columns = nb_columns;
|
||||
m->depths = nb_layers;
|
||||
m->value = malloc(sizeof(float**)*m->depths);
|
||||
for (int i=0; i < m->depths; i++) {
|
||||
m->value[i] = malloc(sizeof(float*)*m->rows);
|
||||
for (int j=0; j < m->rows; j++) {
|
||||
m->value[i][j] = malloc(sizeof(float*)*m->columns);
|
||||
}
|
||||
}
|
||||
return m;
|
||||
}
|
||||
|
||||
|
||||
void uniformise_matrix(Matrix* m, float x) {
|
||||
/* Donne la même valeur x à tous les éléments de la matrice */
|
||||
for (int i=0; i < m->depths; i++) {
|
||||
for (int j=0; j < m->rows; j++) {
|
||||
for (int k=0; k < m->columns; k++) {
|
||||
m->value[i][j][k] = x;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void print_matrix(Matrix* m) {
|
||||
/* Affiche la matrice */
|
||||
for (int i=0; i < m->depths; i++) {
|
||||
if (i!=0)
|
||||
printf("-----------------\n");
|
||||
for (int j=0; j < m->rows; j++) {
|
||||
for (int k=0; k < m->columns; k++) {
|
||||
if (k!=0)
|
||||
printf(",");
|
||||
printf("%f ", m->value[i][j][k]);
|
||||
}
|
||||
printf("\n");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
float max_in_matrix(Matrix* m) {
|
||||
/* Renvoie l'élément maximal de la matrice */
|
||||
float max_tmp = FLT_MIN;
|
||||
for (int i=0; i < m->depths; i++) {
|
||||
for (int j=0; j < m->rows; j++) {
|
||||
for (int k=0; k < m->columns; k++) {
|
||||
max_tmp = max_float(max_tmp, m->value[i][j][k]);
|
||||
}
|
||||
}
|
||||
}
|
||||
return max_tmp;
|
||||
}
|
||||
|
||||
|
||||
void free_matrix(Matrix* m) {
|
||||
/* Libère l'espace mémoire alloué à la matrice */
|
||||
for (int i=0; i < m->depths; i++) {
|
||||
for (int j=0; j < m->rows; j++) {
|
||||
free(m->value[i][j]);
|
||||
}
|
||||
free(m->value[i]);
|
||||
}
|
||||
free(m->value);
|
||||
}
|
||||
|
||||
|
||||
float number_from_matrix(Matrix* m) {
|
||||
/* Renvoie la somme des éléments de la matrice */
|
||||
float tmp=0;
|
||||
for (int i=0; i < m->depths ; i++) {
|
||||
for (int j=0; j < m->rows; j++) {
|
||||
for (int k=0; k < m->columns; k++) {
|
||||
tmp += m->value[i][j][k];
|
||||
}
|
||||
}
|
||||
}
|
||||
return tmp;
|
||||
}
|
||||
|
||||
|
||||
void product_of_a_scalar_matrix(Matrix* m, float scalar) {
|
||||
/* Multiplie la matrice par un scalaire */
|
||||
for (int i=0; i < m->depths; i++) {
|
||||
for (int j=0; j < m->rows; j++) {
|
||||
for (int k=0; k < m->columns; k++) {
|
||||
m->value[i][j][k] *= scalar;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void sum_of_a_scalar_matrix(Matrix* m, float scalar) {
|
||||
/* Ajoute un scalaire à la matrice */
|
||||
for (int i=0; i < m->depths; i++) {
|
||||
for (int j=0; j < m->rows; j++) {
|
||||
for (int k=0; k < m->columns; k++) {
|
||||
m->value[i][j][k] += scalar;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
Matrix* copy_matrix(Matrix* m) {
|
||||
/* Renvoie une copie de la matrice */
|
||||
Matrix* new_m = create_matrix(m->depths, m->rows, m->columns);
|
||||
for (int i=0; i < m->depths; i++) {
|
||||
for (int j=0; j < m->rows; j++) {
|
||||
for (int k=0; k < m->columns; k++) {
|
||||
new_m->value[i][j][k] = m->value[i][j][k];
|
||||
}
|
||||
}
|
||||
}
|
||||
return new_m;
|
||||
}
|
||||
|
||||
|
||||
Matrix* apply_function_new_matrix(Matrix* m, float (*f)(float)) {
|
||||
/* Renvoie une matrice avec une fonction appliquée
|
||||
à tous les éléments de l'ancienne matrice */
|
||||
Matrix* new_m = create_matrix(m->depths, m->rows, m->columns);
|
||||
for (int i=0; i < m->depths; i++) {
|
||||
for (int j=0; j < m ->rows; j++) {
|
||||
for (int k=0; k < m->columns; k++) {
|
||||
new_m->value[i][j][k] = (*f)(m->value[i][j][k]);
|
||||
}
|
||||
}
|
||||
}
|
||||
return new_m;
|
||||
}
|
||||
|
||||
|
||||
void apply_function_matrix(Matrix* m, float (*f)(float)) {
|
||||
/* Applique une fonction à tous les éléments de la matrice */
|
||||
for (int i=0; i < m->depths; i++) {
|
||||
for (int j=0; j < m ->rows; j++) {
|
||||
for (int k=0; k < m->columns; k++) {
|
||||
m->value[i][j][k] = (*f)(m->value[i][j][k]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
Matrix* add_matrix(Matrix* m1, Matrix* m2) {
|
||||
/* Renvoie la somme de deux matrices */
|
||||
if (m1->depths != m2->depths || m1->rows != m2->rows || m1->columns != m2->columns) {
|
||||
printf("Erreur, matrices non compatibles avec la somme");
|
||||
return NULL;
|
||||
}
|
||||
Matrix* m = create_matrix(m1->depths, m1->rows, m2->columns);
|
||||
for (int i=0; i < m->depths; i++) {
|
||||
for (int j=0; j < m->rows; j++) {
|
||||
for (int k=0; k < m->columns; k++) {
|
||||
m->value[i][j][k] = m1->value[i][j][k] + m2->value[i][j][k];
|
||||
}
|
||||
}
|
||||
}
|
||||
return m;
|
||||
}
|
||||
|
||||
|
||||
/*Matrix* product_matrix(Matrix* m1, Matrix* m2) { // TO DO
|
||||
Renvoie une nouvelle matrice produit (classique)
|
||||
des deux matrices si les dimensions sont correctes
|
||||
if (m1->depths != m2->rows || m1->rows != ) {
|
||||
printf("Erreur, matrices non compatibles avec le produit");
|
||||
return NULL;
|
||||
}
|
||||
float cpt;
|
||||
Matrix* m = create_matrix(m1->rows, m2->columns);
|
||||
for (int i=0; i < m->rows; i++) {
|
||||
for (int j=0; j < m->columns; j++) {
|
||||
cpt=0;
|
||||
for (int k=0; k < m2->rows; k++) {
|
||||
cpt += m1->value[i][j]* m2->value[k][j];
|
||||
}
|
||||
m->value[i][j] = cpt;
|
||||
}
|
||||
}
|
||||
return m;
|
||||
}*/
|
||||
|
||||
|
||||
void max_pooling_matrix(Matrix* m_in, Matrix* kernel, int stride, Matrix* m_out) {
|
||||
/* Insère le résultat de max pooling avec un décalage
|
||||
de (stride) éléments dans la matrice m_out */
|
||||
if (m_in->depths < kernel->depths || m_in->rows < kernel->rows || m_in->columns < kernel->columns) {
|
||||
printf("Erreur, kernel plus grand que la matrice dans max pooling");
|
||||
return;
|
||||
}
|
||||
if (((m_in->depths - kernel->depths)/stride)+1 != m_out->depths || ((m_in->rows - kernel->rows)/stride)+1 != m_out->rows || ((m_in->columns - kernel->columns)/stride)+1 != m_out->columns) {
|
||||
printf("Erreur, matrice et kernel non compatibles avec le décalage ou la matrice sortante dans max pooling");
|
||||
return;
|
||||
}
|
||||
int i, j, k, a, b, c;
|
||||
float tmp;
|
||||
for (i=0; i < m_out->depths; i++) {
|
||||
for (j=0; j < m_out->rows; j++) {
|
||||
for (k=0; k < m_out->columns; k++) {
|
||||
tmp = FLT_MIN;
|
||||
for (a=0; a < kernel->depths; a++) {
|
||||
for (b=0; b < kernel->rows; b++) {
|
||||
for (c=0; c < kernel->columns; c++) {
|
||||
tmp = max_float(tmp, m_in->value[i*stride +a][j*stride +b][k*stride +c]);
|
||||
}
|
||||
}
|
||||
}
|
||||
m_out->value[i][j][k] = tmp;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void min_pooling_matrix(Matrix* m_in, Matrix* kernel, int stride, Matrix* m_out) {
|
||||
/* Insère le résultat de min pooling avec un décalage
|
||||
de (stride) éléments dans la matrice m_out */
|
||||
if (m_in->depths < kernel->depths || m_in->rows < kernel->rows || m_in->columns < kernel->columns) {
|
||||
printf("Erreur, kernel plus grand que la matrice dans min pooling");
|
||||
return;
|
||||
}
|
||||
if (((m_in->depths - kernel->depths)/stride)+1 != m_out->depths || ((m_in->rows - kernel->rows)/stride)+1 != m_out->rows || ((m_in->columns - kernel->columns)/stride)+1 != m_out->columns) {
|
||||
printf("Erreur, matrice et kernel non compatibles avec le décalage ou la matrice sortante dans min pooling");
|
||||
return;
|
||||
}
|
||||
int i, j, k, a, b, c;
|
||||
float tmp;
|
||||
for (i=0; i < m_out->depths; i++) {
|
||||
for (j=0; j < m_out->rows; j++) {
|
||||
for (k=0; k < m_out->columns; k++) {
|
||||
tmp = FLT_MAX;
|
||||
for (a=0; a < kernel->depths; a++) {
|
||||
for (b=0; b < kernel->rows; b++) {
|
||||
for (c=0; c < kernel->columns; c++) {
|
||||
tmp = min_float(tmp, m_in->value[i*stride +a][j*stride +b][k*stride +c]);
|
||||
}
|
||||
}
|
||||
}
|
||||
m_out->value[i][j][k] = tmp;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void average_pooling_matrix(Matrix* m_in, Matrix* kernel, int stride, Matrix* m_out) {
|
||||
/* Insère le résultat de average pooling avec un décalage
|
||||
de (stride) éléments dans la matrice m_out */
|
||||
if (m_in->depths < kernel->depths || m_in->rows < kernel->rows || m_in->columns < kernel->columns) {
|
||||
printf("Erreur, kernel plus grand que la matrice dans average pooling");
|
||||
return;
|
||||
}
|
||||
if (((m_in->depths - kernel->depths)/stride)+1 != m_out->depths || ((m_in->rows - kernel->rows)/stride)+1 != m_out->rows || ((m_in->columns - kernel->columns)/stride)+1 != m_out->columns) {
|
||||
printf("Erreur, matrice et kernel non compatibles avec le décalage ou la matrice sortante dans average pooling");
|
||||
return;
|
||||
}
|
||||
int i, j, k, a, b, c, nb=kernel->depths*kernel->rows*kernel->columns;
|
||||
float tmp;
|
||||
for (i=0; i < m_out->depths; i++) {
|
||||
for (j=0; j < m_out->rows; j++) {
|
||||
for (k=0; k < m_out->columns; k++) {
|
||||
tmp = 0;
|
||||
for (a=0; a < kernel->depths; a++) {
|
||||
for (b=0; b < kernel->rows; b++) {
|
||||
for (c=0; c < kernel->columns; c++) {
|
||||
tmp += m_in->value[i*stride +a][j*stride +b][k*stride +c];
|
||||
}
|
||||
}
|
||||
}
|
||||
m_out->value[i][j][k] = tmp/nb;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void valid_cross_correlation_matrix(Matrix* m_in, Matrix* kernel, int stride, Matrix* m_out) {
|
||||
/* Insère, la cross-correlation valide de m_in et
|
||||
kernel avec un décalage de stride, dans m_out */
|
||||
if (m_in->depths < kernel->depths || m_in->rows < kernel->rows || m_in->columns < kernel->columns) {
|
||||
printf("Erreur, kernel plus grand que la matrice dans valid cross-correlation");
|
||||
return;
|
||||
}
|
||||
if (((m_in->depths - kernel->depths)/stride)+1 != m_out->depths || ((m_in->rows - kernel->rows)/stride)+1 != m_out->rows || ((m_in->columns - kernel->columns)/stride)+1 != m_out->columns) {
|
||||
printf("Erreur, matrice et kernel non compatibles avec le décalage ou la matrice sortante dans valid cross-correlation");
|
||||
return;
|
||||
}
|
||||
int i, j, k, a, b, c, new_i, new_j, new_k;
|
||||
for (i=0; i < m_out->depths; i++) {
|
||||
for (j=0; j < m_out->rows; j++) {
|
||||
for (k=0; k < m_out->columns; k++) {
|
||||
m_out->value[i][j][k] = 0;
|
||||
for (a=0; a < kernel->depths; a++) {
|
||||
for (b=0; b < kernel->rows; b++) {
|
||||
for (c=0; c < kernel->columns; c++) {
|
||||
m_out->value[i][j][k] += m_in->value[i*stride +a][j*stride +b][k*stride +c]*kernel->value[a][b][c];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void full_cross_correlation_matrix(Matrix* m_in, Matrix* kernel, int stride, Matrix* m_out) {
|
||||
/* Insère, la cross-correlation entière de m_in et
|
||||
kernel avec un décalage de stride, dans m_out */
|
||||
int rows_k = kernel->rows-1;
|
||||
int columns_k = kernel->columns-1;
|
||||
int depths_k = kernel->depths-1;
|
||||
if (m_in->depths < kernel->depths || m_in->rows < kernel->rows || m_in->columns < kernel->columns) {
|
||||
printf("Erreur, kernel plus grand que la matrice dans full cross-correlation");
|
||||
return;
|
||||
}
|
||||
if ((m_in->depths + 2*depths_k)/stride != m_out->depths || (m_in->rows + 2*rows_k)/stride != m_out->rows || (m_in->columns + 2*columns_k)/stride != m_out->columns) {
|
||||
printf("Erreur, matrice et kernel non compatibles avec le décalage ou la matrice sortante dans full cross-correlation");
|
||||
return;
|
||||
}
|
||||
int i, j, k, a, b, c, new_i, new_j, new_k;
|
||||
for (i=-depths_k; i < (m_out->depths + depths_k); i++) {
|
||||
for (j=-rows_k; j < (m_out->rows + rows_k); j++) {
|
||||
for (k=--columns_k; k < (m_out->columns + columns_k); k++) {
|
||||
m_out->value[i+rows_k][j+columns_k] = 0;
|
||||
for (a=0; a < kernel->depths; a++) {
|
||||
for (b=0; b < kernel->rows; b++) {
|
||||
for (c=0; c < kernel->columns; c++) {
|
||||
new_i = i*stride +a;
|
||||
new_j = j*stride +b;
|
||||
new_k = k*stride +c;
|
||||
if (new_k >= 0 || new_k < m_in->columns || new_i >= 0 || new_i < m_in->depths || new_j >= 0 || new_j < m_in->rows)
|
||||
m_out->value[i+depths_k][j+rows_k][k+columns_k] += m_in->value[new_i][new_j][new_k]*kernel->value[a][b][c];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void softmax_matrix(Matrix* m) {
|
||||
/* Applique la fonction softmax sur la matrice en changeant ses valeurs */
|
||||
float max = max_in_matrix(m);
|
||||
sum_of_a_scalar_matrix(m, (-1)*max);
|
||||
apply_function_matrix(m, exp_float);
|
||||
float sum = number_from_matrix(m);
|
||||
sum = 1/sum;
|
||||
product_of_a_scalar_matrix(m, sum);
|
||||
}
|
||||
|
||||
|
||||
float quadratic_cost_matrix(Matrix* m, int i_number, int j_number, int k_number) {
|
||||
/* Renvoie l'erreur de la matrice où les valeurs sont des probabailités */
|
||||
float loss = 0;
|
||||
for (int i=0; i < m->depths; i++) {
|
||||
for (int j=0; j < m->rows; j++) {
|
||||
for (int k=0; k < m->columns; k++) {
|
||||
if (i==i_number && j==j_number && k==k_number)
|
||||
loss += (1-m->value[i][j][k])*(1-m->value[i][j][k]);
|
||||
else
|
||||
loss += m->value[i][j][k]*m->value[i][j][k];
|
||||
}
|
||||
}
|
||||
}
|
||||
return loss;
|
||||
}
|
||||
|
||||
|
||||
/*void rotation_180_matrix(Matrix* m) { // TO DO
|
||||
if (m->rows != m-> columns) {
|
||||
printf("Erreur, une matrice non carrée ne peut pas être retourner");
|
||||
return;
|
||||
}
|
||||
float tmp;
|
||||
int half_rows = m->rows/2;
|
||||
int max_r = m->rows-1;
|
||||
int max_c = m->columns-1;
|
||||
for (int i=0; i < m->rows; i++) {
|
||||
for (int j=i; j < m->columns; j++) {
|
||||
if (i!=j || i>=half_rows) {
|
||||
tmp = m->value[i][j];
|
||||
m->value[i][j] = m->value[max_r-i][max_c-j];
|
||||
m->value[max_r-i][max_c-j] = tmp;
|
||||
}
|
||||
}
|
||||
}
|
||||
}*/
|
||||
|
||||
|
||||
|
||||
|
||||
int main() {
|
||||
Matrix* m = create_matrix(3, 3, 3);
|
||||
m->value[0][1][2]=10;
|
||||
softmax_matrix(m);
|
||||
print_matrix(m);
|
||||
free_matrix(m);
|
||||
return 1;
|
||||
}
|
Loading…
Reference in New Issue
Block a user