Add copy_network

This commit is contained in:
augustin64 2022-10-05 11:20:26 +02:00
parent 60a4976dd6
commit b64561f64f
5 changed files with 178 additions and 5 deletions

View File

@ -118,6 +118,5 @@ void free_network(Network* network) {
free_2d_average_pooling(network, i);
}
}
printf("Network freed successfully !\n");
free_network_creation(network);
}

View File

@ -30,14 +30,14 @@ typedef struct Kernel {
typedef struct Network{
int dropout; // Contient la probabilité d'abandon d'un neurone dans [0, 100] (entiers)
int learning_rate;
int learning_rate; // Taux d'apprentissage du réseau
int initialisation; // Contient le type d'initialisation
int max_size; // Taille du tableau contenant le réseau
int size; // Taille actuelle du réseau (size ≤ max_size)
int* width; // width[size]
int* depth; // depth[size]
Kernel** kernel; // Tableau de tous les kernels
float**** input; // Tableau de toutes les couches du réseau input[nb couches][couche->depth][couche->dim][couche->dim]
Kernel** kernel; // kernel[size], contient tous les kernels
float**** input; // Tableau de toutes les couches du réseau input[size][couche->depth][couche->width][couche->width]
} Network;
#endif

View File

@ -14,4 +14,9 @@
*/
bool equals_networks(Network* network1, Network* network2);
/*
* Duplique un réseau
*/
Network* copy_network(Network* network);
#endif

View File

@ -6,7 +6,16 @@
#include "../colors.h"
#include "include/struct.h"
#define checkEquals(var, name, indice) if (network1->var != network2->var) { printf_error("network1->" name " et network2->" name " ne sont pas égaux\n"); if (indice != -1) {printf(BOLDBLUE"[ INFO_ ]"RESET" indice: %d\n", indice);} return false; }
#define copyVar(var) network_cp->var = network->var
#define checkEquals(var, name, indice) \
if (network1->var != network2->var) { \
printf_error("network1->" name " et network2->" name " ne sont pas égaux\n"); \
if (indice != -1) { \
printf(BOLDBLUE"[ INFO_ ]"RESET" indice: %d\n", indice); \
} \
return false; \
}
bool equals_networks(Network* network1, Network* network2) {
checkEquals(size, "size", -1);
@ -65,3 +74,138 @@ bool equals_networks(Network* network1, Network* network2) {
return true;
}
Network* copy_network(Network* network) {
Network* network_cp = (Network*)malloc(sizeof(Network));
// Paramètre du réseau
int size = network->size;
// Paramètres des couches NN
int input_units;
int output_units;
// Paramètres des couches CNN
int rows;
int k_size;
int columns;
copyVar(dropout);
copyVar(learning_rate);
copyVar(initialisation);
copyVar(max_size);
copyVar(size);
network_cp->width = (int*)malloc(sizeof(int)*size);
network_cp->depth = (int*)malloc(sizeof(int)*size);
for (int i=0; i < size; i++) {
copyVar(width[i]);
copyVar(depth[i]);
}
network_cp->kernel = (Kernel**)malloc(sizeof(Kernel*)*size);
for (int i=0; i < size; i++) {
network_cp->kernel[i] = (Kernel*)malloc(sizeof(Kernel));
if (!network->kernel[i]->nn && !network->kernel[i]->cnn) { // Cas de la couche de linéarisation
copyVar(kernel[i]->activation);
copyVar(kernel[i]->linearisation); // 1
network_cp->kernel[i]->cnn = NULL;
network_cp->kernel[i]->nn = NULL;
}
else if (!network->kernel[i]->cnn) { // Cas du NN
copyVar(kernel[i]->activation);
copyVar(kernel[i]->linearisation); // 0
input_units = network->kernel[i]->nn->input_units;
output_units = network->kernel[i]->nn->output_units;
network_cp->kernel[i]->cnn = NULL;
network_cp->kernel[i]->nn = (Kernel_nn*)malloc(sizeof(Kernel_nn));
copyVar(kernel[i]->nn->input_units);
copyVar(kernel[i]->nn->output_units);
network_cp->kernel[i]->nn->bias = (float*)malloc(sizeof(float)*output_units);
network_cp->kernel[i]->nn->d_bias = (float*)malloc(sizeof(float)*output_units);
for (int j=0; j < output_units; j++) {
copyVar(kernel[i]->nn->bias[j]);
network_cp->kernel[i]->nn->d_bias[j] = 0.;
}
network_cp->kernel[i]->nn->weights = (float**)malloc(sizeof(float*)*input_units);
network_cp->kernel[i]->nn->d_weights = (float**)malloc(sizeof(float*)*input_units);
for (int j=0; j < input_units; j++) {
network_cp->kernel[i]->nn->weights[j] = (float*)malloc(sizeof(float)*output_units);
network_cp->kernel[i]->nn->d_weights[j] = (float*)malloc(sizeof(float)*output_units);
for (int k=0; k < output_units; k++) {
copyVar(kernel[i]->nn->weights[j][k]);
network_cp->kernel[i]->nn->d_weights[j][k] = 0.;
}
}
}
else { // Cas du CNN
copyVar(kernel[i]->activation);
copyVar(kernel[i]->linearisation); // 0
rows = network->kernel[i]->cnn->rows;
k_size = network->kernel[i]->cnn->k_size;
columns = network->kernel[i]->cnn->columns;
network_cp->kernel[i]->nn = NULL;
network_cp->kernel[i]->cnn = (Kernel_cnn*)malloc(sizeof(Kernel_cnn));
copyVar(kernel[i]->cnn->rows);
copyVar(kernel[i]->cnn->k_size);
copyVar(kernel[i]->cnn->columns);
network_cp->kernel[i]->cnn->bias = (float***)malloc(sizeof(float**)*columns);
network_cp->kernel[i]->cnn->d_bias = (float***)malloc(sizeof(float**)*columns);
for (int j=0; j < columns; j++) {
network_cp->kernel[i]->cnn->bias[j] = (float**)malloc(sizeof(float*)*k_size);
network_cp->kernel[i]->cnn->d_bias[j] = (float**)malloc(sizeof(float*)*k_size);
for (int k=0; k < k_size; k++) {
network_cp->kernel[i]->cnn->bias[j][k] = (float*)malloc(sizeof(float)*k_size);
network_cp->kernel[i]->cnn->d_bias[j][k] = (float*)malloc(sizeof(float)*k_size);
for (int l=0; l < k_size; l++) {
copyVar(kernel[i]->cnn->bias[j][k][l]);
network_cp->kernel[i]->cnn->d_bias[j][k][l] = 0.;
}
}
}
network_cp->kernel[i]->cnn->w = (float****)malloc(sizeof(float***)*rows);
network_cp->kernel[i]->cnn->d_w = (float****)malloc(sizeof(float***)*rows);
for (int j=0; j < rows; j++) {
network_cp->kernel[i]->cnn->w[j] = (float***)malloc(sizeof(float**)*columns);
network_cp->kernel[i]->cnn->d_w[j] = (float***)malloc(sizeof(float**)*columns);
for (int k=0; k < columns; k++) {
network_cp->kernel[i]->cnn->w[j][k] = (float**)malloc(sizeof(float*)*k_size);
network_cp->kernel[i]->cnn->d_w[j][k] = (float**)malloc(sizeof(float*)*k_size);
for (int l=0; l < k_size; l++) {
network_cp->kernel[i]->cnn->w[j][k][l] = (float*)malloc(sizeof(float)*k_size);
network_cp->kernel[i]->cnn->d_w[j][k][l] = (float*)malloc(sizeof(float)*k_size);
for (int m=0; m < k_size; m++) {
copyVar(kernel[i]->cnn->w[j][k][l][m]);
network_cp->kernel[i]->cnn->d_w[j][k][l][m] = 0.;
}
}
}
}
}
}
network_cp->input = (float****)malloc(sizeof(float***)*size);
for (int i=0; i < size; i++) { // input[size][couche->depth][couche->dim][couche->dim]
network_cp->input[i] = (float***)malloc(sizeof(float**)*network->depth[i]);
for (int j=0; j < network->depth[i]; j++) {
network_cp->input[i][j] = (float**)malloc(sizeof(float*)*network->width[i]);
for (int k=0; k < network->width[i]; k++) {
network_cp->input[i][j][k] = (float*)malloc(sizeof(float)*network->width[i]);
for (int l=0; l < network->width[i]; l++) {
network_cp->input[i][j][k][l] = 0.;
}
}
}
}
return network_cp;
}

25
test/cnn_utils.c Normal file
View File

@ -0,0 +1,25 @@
#include <stdlib.h>
#include <stdio.h>
#include "../src/colors.h"
#include "../src/cnn/creation.c"
#include "../src/cnn/utils.c"
int main() {
printf("Création du réseau\n");
Network* network = create_network_lenet5(0, 0, 3, 2, 32, 1);
printf("OK\n");
printf("Copie du réseau\n");
Network* network_cp = copy_network(network);
printf("OK\n");
printf("Vérification de l'égalité des réseaux\n");
if (! equals_networks(network, network_cp)) {
printf_error("Les deux réseaux obtenus ne sont pas égaux.\n");
exit(1);
}
printf("OK\n");
return 0;
}