mirror of
https://github.com/augustin64/projet-tipe
synced 2025-02-02 19:39:39 +01:00
Add matrix_multiplication.cu
This commit is contained in:
parent
e4ec06705b
commit
afe4c982e7
19
.vscode/launch.json
vendored
19
.vscode/launch.json
vendored
@ -104,6 +104,25 @@
|
||||
}
|
||||
],
|
||||
"preLaunchTask": "build-cnn"
|
||||
},
|
||||
{
|
||||
"name": "./a.out",
|
||||
"type": "cppdbg",
|
||||
"request": "launch",
|
||||
"program": "${workspaceFolder}/a.out",
|
||||
"stopAtEntry": true,
|
||||
"cwd": "${workspaceFolder}",
|
||||
"environment": [],
|
||||
"externalConsole": false,
|
||||
"MIMode": "gdb",
|
||||
"miDebuggerPath": "/usr/bin/gdb",
|
||||
"setupCommands": [
|
||||
{
|
||||
"description": "Enable pretty-printing for gdb",
|
||||
"text": "-enable-pretty-printing",
|
||||
"ignoreFailures": false
|
||||
}
|
||||
]
|
||||
}
|
||||
]
|
||||
}
|
171
src/cnn/matrix_multiplication.cu
Normal file
171
src/cnn/matrix_multiplication.cu
Normal file
@ -0,0 +1,171 @@
|
||||
#include <stdlib.h>
|
||||
#include <stdio.h>
|
||||
#include <time.h>
|
||||
|
||||
#define BLOCKSIZE_x 16
|
||||
#define BLOCKSIZE_y 16
|
||||
|
||||
#ifdef __CUDACC__
|
||||
/* CUDA memcheck */
|
||||
#define gpuErrchk(ans) { gpuAssert((ans), __FILE__, __LINE__); }
|
||||
inline void gpuAssert(cudaError_t code, const char *file, int line, bool abort=true) {
|
||||
if (code != cudaSuccess) {
|
||||
fprintf(stderr,"GPUassert: %s %s %d\n", cudaGetErrorString(code), file, line);
|
||||
if (abort) exit(code);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
int iDivUp(int hostPtr, int b){
|
||||
return ((hostPtr % b) != 0) ? (hostPtr / b + 1) : (hostPtr / b);
|
||||
}
|
||||
|
||||
|
||||
float RandFloat(float low, float high) {
|
||||
float t = (float)rand() / (float)RAND_MAX;
|
||||
return (1.0f - t) * low + t * high;
|
||||
}
|
||||
|
||||
|
||||
void fillMatrixWithRandomValues(float **matrix, int n, int p) {
|
||||
for (int i=0; i < n; i++) {
|
||||
for (int j=0; j < p; j++) {
|
||||
matrix[i][j] = RandFloat(0.0f, 15.0f);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void print_matrix(float** mat, int n, int p) {
|
||||
for (int i=0; i < n; i++) {
|
||||
printf("[\t");
|
||||
for (int j=0; j < p; j++) {
|
||||
printf("%0.1f\t", mat[i][j]);
|
||||
}
|
||||
printf("]\n");
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
float** create_matrix(int n, int p) {
|
||||
float** matrix = (float**)malloc(n*sizeof(float*));
|
||||
for (int i=0; i < n; i++) {
|
||||
matrix[i] = (float*)malloc(sizeof(float)*p);
|
||||
}
|
||||
|
||||
fillMatrixWithRandomValues(matrix, n, p);
|
||||
return matrix;
|
||||
}
|
||||
|
||||
|
||||
float** create_empty_matrix(int n, int p) {
|
||||
float** matrix = (float**)malloc(n*sizeof(float*));
|
||||
for (int i=0; i < n; i++) {
|
||||
matrix[i] = (float*)malloc(p*sizeof(float));
|
||||
for (int j=0; j < p; j++) {
|
||||
matrix[i][j] = 0.;
|
||||
}
|
||||
}
|
||||
return matrix;
|
||||
}
|
||||
|
||||
|
||||
#ifdef __CUDACC__
|
||||
__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int n, int p, int q, size_t pitch_m, size_t pitch_n, size_t pitch_p) {
|
||||
// 2D Thread ID
|
||||
int tx = blockIdx.x*blockDim.x + threadIdx.x;
|
||||
int ty = blockIdx.y*blockDim.y + threadIdx.y;
|
||||
// Pvalue stores the Pd element that is computed by the thread
|
||||
float Pvalue = 0.;
|
||||
float* M_offset;
|
||||
float* N_offset;
|
||||
|
||||
for (int k = 0; k < p; k++) {
|
||||
M_offset = (float *)((char*)Md + ty * pitch_m);
|
||||
N_offset = (float *)((char*)Nd + k * pitch_n);
|
||||
|
||||
Pvalue += M_offset[k] * N_offset[tx];
|
||||
}
|
||||
// Write the matrix to device memory each thread writes one element
|
||||
float* P_offset = (float*)((char*)Pd + ty * pitch_p);
|
||||
P_offset[tx] = Pvalue;
|
||||
}
|
||||
|
||||
|
||||
void matrix_multiplication(float** m1, float** m2, float** result, int n, int p, int q) {
|
||||
// Préparation des matrices
|
||||
size_t pitch_m1_dev;
|
||||
size_t pitch_m2_dev;
|
||||
size_t pitch_result_dev;
|
||||
float* m1_dev;
|
||||
float* m2_dev;
|
||||
float* result_dev;
|
||||
|
||||
gpuErrchk( cudaMallocPitch((void**)&m1_dev, &pitch_m1_dev, p * sizeof(float), n));
|
||||
gpuErrchk( cudaMemcpy2D(m1_dev, pitch_m1_dev, &m1, p*sizeof(float), p* sizeof(float), n, cudaMemcpyHostToDevice));
|
||||
|
||||
gpuErrchk( cudaMallocPitch((void**)&m2_dev, &pitch_m2_dev, q * sizeof(float), p));
|
||||
gpuErrchk( cudaMemcpy2D(m2_dev, pitch_m2_dev, &m2, q*sizeof(float), q* sizeof(float), p, cudaMemcpyHostToDevice));
|
||||
|
||||
gpuErrchk( cudaMallocPitch((void**)&result_dev, &pitch_result_dev, q * sizeof(float), n));
|
||||
|
||||
// Traitement
|
||||
dim3 gridSize(iDivUp(n, BLOCKSIZE_x), iDivUp(q, BLOCKSIZE_y));
|
||||
dim3 blockSize(BLOCKSIZE_y, BLOCKSIZE_x);
|
||||
|
||||
MatrixMulKernel<<<gridSize, blockSize>>>(m1_dev, m2_dev, result_dev, n, p, q, pitch_m1_dev, pitch_m2_dev, pitch_result_dev);
|
||||
gpuErrchk( cudaPeekAtLastError() );
|
||||
gpuErrchk( cudaDeviceSynchronize() );
|
||||
|
||||
// Post-traitement
|
||||
for (int i=0; i < q; i++) {
|
||||
gpuErrchk( cudaMemcpy2D((void*)&(result[i][0]), q*sizeof(float), (const void*)((char*)result_dev + i*pitch_result_dev), pitch_result_dev, sizeof(float)*q, 1, cudaMemcpyDeviceToHost));
|
||||
}
|
||||
|
||||
gpuErrchk( cudaFree(result_dev) );
|
||||
gpuErrchk( cudaFree(m1_dev) );
|
||||
gpuErrchk( cudaFree(m2_dev) );
|
||||
gpuErrchk( cudaPeekAtLastError() );
|
||||
gpuErrchk( cudaDeviceSynchronize() );
|
||||
}
|
||||
|
||||
#else
|
||||
void matrix_multiplication(float* m1, float* m2, float* result, int n, int p, int q) {
|
||||
for (int i=0; i < n; i++) {
|
||||
for (int j=0; j < q; j++) {
|
||||
for (int k=0; k < p; k++) {
|
||||
result[i*q+j] += m1[i*p+k] + m2[k*q+j];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
int main() {
|
||||
srand(time(NULL));
|
||||
int n = 3;
|
||||
int p = 3;
|
||||
int q = 3;
|
||||
float** matrix1 = create_matrix(n, p);
|
||||
float** matrix2 = create_matrix(p, q);
|
||||
float** result = create_empty_matrix(n, q);
|
||||
|
||||
clock_t start, end;
|
||||
double cpu_time_used;
|
||||
|
||||
start = clock();
|
||||
matrix_multiplication(matrix1, matrix2, result, n, p, q);
|
||||
end = clock();
|
||||
|
||||
cpu_time_used = ((double) (end - start)) / CLOCKS_PER_SEC;
|
||||
printf("Time used: %lf seconds\n", cpu_time_used);
|
||||
|
||||
print_matrix(matrix1, n, p);
|
||||
printf("\n");
|
||||
print_matrix(matrix2, p, q);
|
||||
printf("\n");
|
||||
print_matrix(result, n, q);
|
||||
|
||||
return 0;
|
||||
}
|
Loading…
Reference in New Issue
Block a user