mirror of
https://github.com/augustin64/projet-tipe
synced 2025-01-24 07:36:24 +01:00
Merge branch 'main' of https://github.com/julienChemillier/TIPE.git
This commit is contained in:
commit
ac427e1cd9
@ -2,17 +2,17 @@
|
||||
|
||||
## Simple Neural Network
|
||||
- [3Blue1Brown](https://www.3blue1brown.com/topics/neural-networks)
|
||||
|
||||
- [Neptune.ai](https://neptune.ai/blog/backpropagation-algorithm-in-neural-networks-guide)
|
||||
|
||||
- [Medium](https://medium.com/@14prakash/back-propagation-is-very-simple-who-made-it-complicated-97b794c97e5c)
|
||||
- [Simeon Kostadinov: Understanding Backpropagation](https://towardsdatascience.com/understanding-backpropagation-algorithm-7bb3aa2f95fd)
|
||||
|
||||
- [Tobias Hill: Gradient Descent](https://towardsdatascience.com/part-2-gradient-descent-and-backpropagation-bf90932c066a)
|
||||
|
||||
## Convolutional Neural Network
|
||||
|
||||
- [The Independent Code](https://www.youtube.com/watch?v=Lakz2MoHy6o)
|
||||
|
||||
## Jeux de données
|
||||
- [MNIST](http://yann.lecun.com/exdb/mnist/)
|
||||
- [ImageNet](https://www.image-net.org/index.php)
|
||||
|
||||
## CUDA
|
||||
- [Introduction à CUDA](https://developer.nvidia.com/blog/even-easier-introduction-cuda/) (Documentation Nvidia)
|
||||
|
@ -6,6 +6,7 @@
|
||||
#include "include/initialisation.h"
|
||||
#include "include/function.h"
|
||||
#include "include/creation.h"
|
||||
#include "include/update.h"
|
||||
#include "include/make.h"
|
||||
|
||||
#include "../include/colors.h"
|
||||
@ -130,85 +131,6 @@ void copy_input_to_input_z(float*** output, float*** output_a, int output_depth,
|
||||
}
|
||||
}
|
||||
|
||||
void update_weights(Network* network) {
|
||||
int n = network->size;
|
||||
int input_depth, input_width, output_depth, output_width;
|
||||
Kernel* k_i;
|
||||
Kernel* k_i_1;
|
||||
for (int i=0; i<(n-1); i++) {
|
||||
k_i = network->kernel[i];
|
||||
k_i_1 = network->kernel[i+1];
|
||||
input_depth = network->depth[i];
|
||||
input_width = network->width[i];
|
||||
output_depth = network->depth[i+1];
|
||||
output_width = network->width[i+1];
|
||||
|
||||
if (k_i->cnn) { // Convolution
|
||||
Kernel_cnn* cnn = k_i_1->cnn;
|
||||
int k_size = cnn->k_size;
|
||||
for (int a=0; a<input_depth; a++) {
|
||||
for (int b=0; b<output_depth; b++) {
|
||||
for (int c=0; c<k_size; c++) {
|
||||
for (int d=0; d<k_size; d++) {
|
||||
cnn->w[a][b][c][d] += cnn->d_w[a][b][c][d];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
} else if (k_i->nn) { // Full connection
|
||||
if (input_depth==1) { // Vecteur -> Vecteur
|
||||
Kernel_nn* nn = k_i_1->nn;
|
||||
for (int a=0; a<input_width; a++) {
|
||||
for (int b=0; b<output_width; b++) {
|
||||
nn->weights[a][b] += nn->d_weights[a][b];
|
||||
}
|
||||
}
|
||||
} else { // Matrice -> vecteur
|
||||
Kernel_nn* nn = k_i_1->nn;
|
||||
int input_size = input_width*input_width*input_depth;
|
||||
for (int a=0; a<input_size; a++) {
|
||||
for (int b=0; b<output_width; b++) {
|
||||
nn->weights[a][b] += nn->d_weights[a][b];
|
||||
}
|
||||
}
|
||||
}
|
||||
} else { // Pooling
|
||||
(void)0; // Ne rien faire pour la couche pooling
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void update_bias(Network* network) {
|
||||
int n = network->size;
|
||||
int output_width, output_depth;
|
||||
Kernel* k_i;
|
||||
Kernel* k_i_1;
|
||||
for (int i=0; i<(n-1); i++) {
|
||||
k_i = network->kernel[i];
|
||||
k_i_1 = network->kernel[i+1];
|
||||
output_width = network->width[i+1];
|
||||
output_depth = network->depth[i+1];
|
||||
|
||||
if (k_i->cnn) { // Convolution
|
||||
Kernel_cnn* cnn = k_i_1->cnn;
|
||||
for (int a=0; a<output_depth; a++) {
|
||||
for (int b=0; b<output_width; b++) {
|
||||
for (int c=0; c<output_width; c++) {
|
||||
cnn->bias[a][b][c] += cnn->d_bias[a][b][c];
|
||||
}
|
||||
}
|
||||
}
|
||||
} else if (k_i->nn) { // Full connection
|
||||
Kernel_nn* nn = k_i_1->nn;
|
||||
for (int a=0; a<output_width; a++) {
|
||||
nn->bias[a] += nn->d_bias[a];
|
||||
}
|
||||
} else { // Pooling
|
||||
(void)0; // Ne rien faire pour la couche pooling
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
float compute_mean_squared_error(float* output, float* wanted_output, int len) {
|
||||
if (len==0) {
|
||||
printf("Erreur MSE: la longueur de la sortie est de 0 -> division par 0 impossible\n");
|
||||
|
@ -29,7 +29,9 @@ Network* create_network(int max_size, int learning_rate, int dropout, int initia
|
||||
network->kernel[0]->nn = NULL;
|
||||
network->kernel[0]->cnn = NULL;
|
||||
create_a_cube_input_layer(network, 0, input_depth, input_dim);
|
||||
create_a_cube_input_z_layer(network, 0, input_depth, input_dim);
|
||||
// create_a_cube_input_z_layer(network, 0, input_depth, input_dim);
|
||||
// This shouldn't be used (if I'm not mistaken) so to save space, we can do:
|
||||
ntework->input_z[0] = NULL; // As we don't backpropagate the input
|
||||
return network;
|
||||
}
|
||||
|
||||
@ -104,7 +106,7 @@ void add_2d_average_pooling(Network* network, int dim_output) {
|
||||
network->kernel[k_pos]->nn = NULL;
|
||||
network->kernel[k_pos]->activation = 100*kernel_size; // Ne contient pas de fonction d'activation
|
||||
create_a_cube_input_layer(network, n, network->depth[n-1], network->width[n-1]/2);
|
||||
create_a_cube_input_z_layer(network, n, network->depth[n-1], network->width[n-1]/2);
|
||||
create_a_cube_input_z_layer(network, n, network->depth[n-1], network->width[n-1]/2); // Will it be used ?
|
||||
network->size++;
|
||||
}
|
||||
|
||||
@ -130,33 +132,26 @@ void add_convolution(Network* network, int depth_output, int dim_output, int act
|
||||
cnn->columns = depth_output;
|
||||
cnn->w = (float****)malloc(sizeof(float***)*depth_input);
|
||||
cnn->d_w = (float****)malloc(sizeof(float***)*depth_input);
|
||||
cnn->last_d_w = (float****)malloc(sizeof(float***)*depth_input);
|
||||
for (int i=0; i < depth_input; i++) {
|
||||
cnn->w[i] = (float***)malloc(sizeof(float**)*depth_output);
|
||||
cnn->d_w[i] = (float***)malloc(sizeof(float**)*depth_output);
|
||||
cnn->last_d_w[i] = (float***)malloc(sizeof(float**)*depth_output);
|
||||
for (int j=0; j < depth_output; j++) {
|
||||
cnn->w[i][j] = (float**)malloc(sizeof(float*)*kernel_size);
|
||||
cnn->d_w[i][j] = (float**)malloc(sizeof(float*)*kernel_size);
|
||||
cnn->last_d_w[i][j] = (float**)malloc(sizeof(float*)*kernel_size);
|
||||
for (int k=0; k < kernel_size; k++) {
|
||||
cnn->w[i][j][k] = (float*)malloc(sizeof(float)*kernel_size);
|
||||
cnn->d_w[i][j][k] = (float*)malloc(sizeof(float)*kernel_size);
|
||||
cnn->last_d_w[i][j][k] = (float*)malloc(sizeof(float)*kernel_size);
|
||||
}
|
||||
}
|
||||
}
|
||||
cnn->bias = (float***)malloc(sizeof(float**)*depth_output);
|
||||
cnn->d_bias = (float***)malloc(sizeof(float**)*depth_output);
|
||||
cnn->last_d_bias = (float***)malloc(sizeof(float**)*depth_output);
|
||||
for (int i=0; i < depth_output; i++) {
|
||||
cnn->bias[i] = (float**)malloc(sizeof(float*)*bias_size);
|
||||
cnn->d_bias[i] = (float**)malloc(sizeof(float*)*bias_size);
|
||||
cnn->last_d_bias[i] = (float**)malloc(sizeof(float*)*bias_size);
|
||||
for (int j=0; j < bias_size; j++) {
|
||||
cnn->bias[i][j] = (float*)malloc(sizeof(float)*bias_size);
|
||||
cnn->d_bias[i][j] = (float*)malloc(sizeof(float)*bias_size);
|
||||
cnn->last_d_bias[i][j] = (float*)malloc(sizeof(float)*bias_size);
|
||||
}
|
||||
}
|
||||
create_a_cube_input_layer(network, n, depth_output, bias_size);
|
||||
@ -188,14 +183,11 @@ void add_dense(Network* network, int output_units, int activation) {
|
||||
nn->output_units = output_units;
|
||||
nn->bias = (float*)malloc(sizeof(float)*output_units);
|
||||
nn->d_bias = (float*)malloc(sizeof(float)*output_units);
|
||||
nn->last_d_bias = (float*)malloc(sizeof(float)*output_units);
|
||||
nn->weights = (float**)malloc(sizeof(float*)*input_units);
|
||||
nn->d_weights = (float**)malloc(sizeof(float*)*input_units);
|
||||
nn->last_d_weights = (float**)malloc(sizeof(float*)*input_units);
|
||||
for (int i=0; i < input_units; i++) {
|
||||
nn->weights[i] = (float*)malloc(sizeof(float)*output_units);
|
||||
nn->d_weights[i] = (float*)malloc(sizeof(float)*output_units);
|
||||
nn->last_d_weights[i] = (float*)malloc(sizeof(float)*output_units);
|
||||
}
|
||||
create_a_line_input_layer(network, n, output_units);
|
||||
create_a_line_input_z_layer(network, n, output_units);
|
||||
@ -227,14 +219,11 @@ void add_dense_linearisation(Network* network, int output_units, int activation)
|
||||
|
||||
nn->bias = (float*)malloc(sizeof(float)*output_units);
|
||||
nn->d_bias = (float*)malloc(sizeof(float)*output_units);
|
||||
nn->last_d_bias = (float*)malloc(sizeof(float)*output_units);
|
||||
nn->weights = (float**)malloc(sizeof(float*)*input_units);
|
||||
nn->d_weights = (float**)malloc(sizeof(float*)*input_units);
|
||||
nn->last_d_weights = (float**)malloc(sizeof(float*)*input_units);
|
||||
for (int i=0; i < input_units; i++) {
|
||||
nn->weights[i] = (float*)malloc(sizeof(float)*output_units);
|
||||
nn->d_weights[i] = (float*)malloc(sizeof(float)*output_units);
|
||||
nn->last_d_weights[i] = (float*)malloc(sizeof(float)*output_units);
|
||||
}
|
||||
/* Not currently used
|
||||
initialisation_1d_matrix(network->initialisation, nn->bias, output_units, output_units+input_units);
|
||||
|
@ -40,34 +40,27 @@ void free_convolution(Network* network, int pos) {
|
||||
for (int j=0; j < bias_size; j++) {
|
||||
free(k_pos->bias[i][j]);
|
||||
free(k_pos->d_bias[i][j]);
|
||||
free(k_pos->last_d_bias[i][j]);
|
||||
}
|
||||
free(k_pos->bias[i]);
|
||||
free(k_pos->d_bias[i]);
|
||||
free(k_pos->last_d_bias[i]);
|
||||
}
|
||||
free(k_pos->bias);
|
||||
free(k_pos->d_bias);
|
||||
free(k_pos->last_d_bias);
|
||||
|
||||
for (int i=0; i < r; i++) {
|
||||
for (int j=0; j < c; j++) {
|
||||
for (int k=0; k < k_size; k++) {
|
||||
free(k_pos->w[i][j][k]);
|
||||
free(k_pos->d_w[i][j][k]);
|
||||
free(k_pos->last_d_w[i][j][k]);
|
||||
}
|
||||
free(k_pos->w[i][j]);
|
||||
free(k_pos->d_w[i][j]);
|
||||
free(k_pos->last_d_w[i][j]);
|
||||
}
|
||||
free(k_pos->w[i]);
|
||||
free(k_pos->d_w[i]);
|
||||
free(k_pos->last_d_w[i]);
|
||||
}
|
||||
free(k_pos->w);
|
||||
free(k_pos->d_w);
|
||||
free(k_pos->last_d_w);
|
||||
|
||||
free(k_pos);
|
||||
}
|
||||
@ -79,15 +72,12 @@ void free_dense(Network* network, int pos) {
|
||||
for (int i=0; i < dim; i++) {
|
||||
free(k_pos->weights[i]);
|
||||
free(k_pos->d_weights[i]);
|
||||
free(k_pos->last_d_weights[i]);
|
||||
}
|
||||
free(k_pos->weights);
|
||||
free(k_pos->d_weights);
|
||||
free(k_pos->last_d_weights);
|
||||
|
||||
free(k_pos->bias);
|
||||
free(k_pos->d_bias);
|
||||
free(k_pos->last_d_bias);
|
||||
|
||||
free(k_pos);
|
||||
}
|
||||
@ -99,15 +89,12 @@ void free_dense_linearisation(Network* network, int pos) {
|
||||
for (int i=0; i < dim; i++) {
|
||||
free(k_pos->weights[i]);
|
||||
free(k_pos->d_weights[i]);
|
||||
free(k_pos->last_d_weights[i]);
|
||||
}
|
||||
free(k_pos->weights);
|
||||
free(k_pos->d_weights);
|
||||
free(k_pos->last_d_weights);
|
||||
|
||||
free(k_pos->bias);
|
||||
free(k_pos->d_bias);
|
||||
free(k_pos->last_d_bias);
|
||||
|
||||
free(k_pos);
|
||||
}
|
||||
|
@ -48,6 +48,9 @@ void choose_apply_function_matrix(int activation, float*** input, int depth, int
|
||||
*/
|
||||
void choose_apply_function_vector(int activation, float*** input, int dim);
|
||||
|
||||
/*
|
||||
* Renvoie la fonction d'activation correspondant à son identifiant (activation)
|
||||
*/
|
||||
ptr get_function_activation(int activation);
|
||||
|
||||
#endif
|
@ -7,10 +7,8 @@ typedef struct Kernel_cnn {
|
||||
int columns; // Depth of the output
|
||||
float*** bias; // bias[columns][dim_output][dim_output]
|
||||
float*** d_bias; // d_bias[columns][dim_output][dim_output]
|
||||
float*** last_d_bias; // last_d_bias[columns][dim_output][dim_output]
|
||||
float**** w; // w[rows][columns][k_size][k_size]
|
||||
float**** d_w; // d_w[rows][columns][k_size][k_size]
|
||||
float**** last_d_w; // last_d_w[rows][columns][k_size][k_size]
|
||||
} Kernel_cnn;
|
||||
|
||||
typedef struct Kernel_nn {
|
||||
@ -18,10 +16,8 @@ typedef struct Kernel_nn {
|
||||
int output_units; // Nombre d'éléments en sortie
|
||||
float* bias; // bias[output_units]
|
||||
float* d_bias; // d_bias[output_units]
|
||||
float* last_d_bias; // last_d_bias[output_units]
|
||||
float** weights; // weight[input_units][output_units]
|
||||
float** d_weights; // d_weights[input_units][output_units]
|
||||
float** last_d_weights; // last_d_weights[input_units][output_units]
|
||||
} Kernel_nn;
|
||||
|
||||
typedef struct Kernel {
|
||||
|
26
src/cnn/include/update.h
Normal file
26
src/cnn/include/update.h
Normal file
@ -0,0 +1,26 @@
|
||||
#ifndef DEF_UPDATE_H
|
||||
#define DEF_UPDATE_H
|
||||
|
||||
/*
|
||||
* Met à jours les poids à partir de données obtenus après plusieurs backpropagations
|
||||
* Puis met à 0 tous les d_weights
|
||||
*/
|
||||
void update_weights(Network* network);
|
||||
|
||||
/*
|
||||
* Met à jours les biais à partir de données obtenus après plusieurs backpropagations
|
||||
* Puis met à 0 tous les d_bias
|
||||
*/
|
||||
void update_bias(Network* network);
|
||||
|
||||
/*
|
||||
* Met à 0 toutes les données de backpropagation de poids
|
||||
*/
|
||||
void reset_d_weights(Network* network);
|
||||
|
||||
/*
|
||||
* Met à 0 toutes les données de backpropagation de biais
|
||||
*/
|
||||
void reset_d_bias(Network* network);
|
||||
|
||||
#endif
|
165
src/cnn/update.c
Normal file
165
src/cnn/update.c
Normal file
@ -0,0 +1,165 @@
|
||||
|
||||
#include "update.h"
|
||||
|
||||
void update_weights(Network* network) {
|
||||
int n = network->size;
|
||||
int input_depth, input_width, output_depth, output_width;
|
||||
Kernel* k_i;
|
||||
Kernel* k_i_1;
|
||||
for (int i=0; i<(n-1); i++) {
|
||||
k_i = network->kernel[i];
|
||||
k_i_1 = network->kernel[i+1];
|
||||
input_depth = network->depth[i];
|
||||
input_width = network->width[i];
|
||||
output_depth = network->depth[i+1];
|
||||
output_width = network->width[i+1];
|
||||
|
||||
if (k_i->cnn) { // Convolution
|
||||
Kernel_cnn* cnn = k_i_1->cnn;
|
||||
int k_size = cnn->k_size;
|
||||
for (int a=0; a<input_depth; a++) {
|
||||
for (int b=0; b<output_depth; b++) {
|
||||
for (int c=0; c<k_size; c++) {
|
||||
for (int d=0; d<k_size; d++) {
|
||||
cnn->w[a][b][c][d] += cnn->d_w[a][b][c][d];
|
||||
cnn->d_w[a][b][c][d] = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
} else if (k_i->nn) { // Full connection
|
||||
if (input_depth==1) { // Vecteur -> Vecteur
|
||||
Kernel_nn* nn = k_i_1->nn;
|
||||
for (int a=0; a<input_width; a++) {
|
||||
for (int b=0; b<output_width; b++) {
|
||||
nn->weights[a][b] += nn->d_weights[a][b];
|
||||
nn->d_weights[a][b] = 0;
|
||||
}
|
||||
}
|
||||
} else { // Matrice -> vecteur
|
||||
Kernel_nn* nn = k_i_1->nn;
|
||||
int input_size = input_width*input_width*input_depth;
|
||||
for (int a=0; a<input_size; a++) {
|
||||
for (int b=0; b<output_width; b++) {
|
||||
nn->weights[a][b] += nn->d_weights[a][b];
|
||||
nn->d_weights[a][b] = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
} else { // Pooling
|
||||
(void)0; // Ne rien faire pour la couche pooling
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void update_bias(Network* network) {
|
||||
int n = network->size;
|
||||
int output_width, output_depth;
|
||||
Kernel* k_i;
|
||||
Kernel* k_i_1;
|
||||
for (int i=0; i<(n-1); i++) {
|
||||
k_i = network->kernel[i];
|
||||
k_i_1 = network->kernel[i+1];
|
||||
output_width = network->width[i+1];
|
||||
output_depth = network->depth[i+1];
|
||||
|
||||
if (k_i->cnn) { // Convolution
|
||||
Kernel_cnn* cnn = k_i_1->cnn;
|
||||
for (int a=0; a<output_depth; a++) {
|
||||
for (int b=0; b<output_width; b++) {
|
||||
for (int c=0; c<output_width; c++) {
|
||||
cnn->bias[a][b][c] += cnn->d_bias[a][b][c];
|
||||
cnn->d_bias[a][b][c] = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
} else if (k_i->nn) { // Full connection
|
||||
Kernel_nn* nn = k_i_1->nn;
|
||||
for (int a=0; a<output_width; a++) {
|
||||
nn->bias[a] += nn->d_bias[a];
|
||||
nn->d_bias[a] = 0;
|
||||
}
|
||||
} else { // Pooling
|
||||
(void)0; // Ne rien faire pour la couche pooling
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void reset_d_weights(Network* network) {
|
||||
int n = network->size;
|
||||
int input_depth, input_width, output_depth, output_width;
|
||||
Kernel* k_i;
|
||||
Kernel* k_i_1;
|
||||
for (int i=0; i<(n-1); i++) {
|
||||
k_i = network->kernel[i];
|
||||
k_i_1 = network->kernel[i+1];
|
||||
input_depth = network->depth[i];
|
||||
input_width = network->width[i];
|
||||
output_depth = network->depth[i+1];
|
||||
output_width = network->width[i+1];
|
||||
|
||||
if (k_i->cnn) { // Convolution
|
||||
Kernel_cnn* cnn = k_i_1->cnn;
|
||||
int k_size = cnn->k_size;
|
||||
for (int a=0; a<input_depth; a++) {
|
||||
for (int b=0; b<output_depth; b++) {
|
||||
for (int c=0; c<k_size; c++) {
|
||||
for (int d=0; d<k_size; d++) {
|
||||
cnn->d_w[a][b][c][d] = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
} else if (k_i->nn) { // Full connection
|
||||
if (input_depth==1) { // Vecteur -> Vecteur
|
||||
Kernel_nn* nn = k_i_1->nn;
|
||||
for (int a=0; a<input_width; a++) {
|
||||
for (int b=0; b<output_width; b++) {
|
||||
nn->d_weights[a][b] = 0;
|
||||
}
|
||||
}
|
||||
} else { // Matrice -> vecteur
|
||||
Kernel_nn* nn = k_i_1->nn;
|
||||
int input_size = input_width*input_width*input_depth;
|
||||
for (int a=0; a<input_size; a++) {
|
||||
for (int b=0; b<output_width; b++) {
|
||||
nn->d_weights[a][b] = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
} else { // Pooling
|
||||
(void)0; // Ne rien faire pour la couche pooling
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void reset_d_bias(Network* network) {
|
||||
int n = network->size;
|
||||
int output_width, output_depth;
|
||||
Kernel* k_i;
|
||||
Kernel* k_i_1;
|
||||
for (int i=0; i<(n-1); i++) {
|
||||
k_i = network->kernel[i];
|
||||
k_i_1 = network->kernel[i+1];
|
||||
output_width = network->width[i+1];
|
||||
output_depth = network->depth[i+1];
|
||||
|
||||
if (k_i->cnn) { // Convolution
|
||||
Kernel_cnn* cnn = k_i_1->cnn;
|
||||
for (int a=0; a<output_depth; a++) {
|
||||
for (int b=0; b<output_width; b++) {
|
||||
for (int c=0; c<output_width; c++) {
|
||||
cnn->d_bias[a][b][c] = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
} else if (k_i->nn) { // Full connection
|
||||
Kernel_nn* nn = k_i_1->nn;
|
||||
for (int a=0; a<output_width; a++) {
|
||||
nn->d_bias[a] = 0;
|
||||
}
|
||||
} else { // Pooling
|
||||
(void)0; // Ne rien faire pour la couche pooling
|
||||
}
|
||||
}
|
||||
}
|
@ -104,16 +104,13 @@ void run_convolution_test(int input_dim, int output_dim, int rows, int columns)
|
||||
// bias[kernel->columns][dim_output][dim_output]
|
||||
kernel->bias = create_matrix(kernel->columns, output_dim, output_dim, 15.0f);
|
||||
kernel->d_bias = create_matrix(kernel->columns, output_dim, output_dim, 1.5f);
|
||||
kernel->last_d_bias = create_matrix(kernel->columns, output_dim, output_dim, 0.1f);
|
||||
|
||||
// w[rows][columns][k_size][k_size]
|
||||
kernel->w = (float****)malloc(sizeof(float***)*kernel->rows);
|
||||
kernel->d_w = (float****)malloc(sizeof(float***)*kernel->rows);
|
||||
kernel->last_d_w = (float****)malloc(sizeof(float***)*kernel->rows);
|
||||
for (int i=0; i < kernel->rows; i++) {
|
||||
kernel->w[i] = create_matrix(kernel->columns, kernel->k_size, kernel->k_size, 15.0f);
|
||||
kernel->d_w[i] = create_matrix(kernel->columns, kernel->k_size, kernel->k_size, 1.5f);
|
||||
kernel->last_d_w[i] = create_matrix(kernel->columns, kernel->k_size, kernel->k_size, 0.1f);
|
||||
}
|
||||
|
||||
float*** input = create_matrix(kernel->rows, input_dim, input_dim, 5.0f);
|
||||
@ -151,16 +148,13 @@ void run_convolution_test(int input_dim, int output_dim, int rows, int columns)
|
||||
|
||||
free_matrix(kernel->bias, kernel->columns, output_dim);
|
||||
free_matrix(kernel->d_bias, kernel->columns, output_dim);
|
||||
free_matrix(kernel->last_d_bias, kernel->columns, output_dim);
|
||||
|
||||
for (int i=0; i < kernel->rows; i++) {
|
||||
free_matrix(kernel->w[i], kernel->columns, kernel->k_size);
|
||||
free_matrix(kernel->d_w[i], kernel->columns, kernel->k_size);
|
||||
free_matrix(kernel->last_d_w[i], kernel->columns, kernel->k_size);
|
||||
}
|
||||
free(kernel->w);
|
||||
free(kernel->d_w);
|
||||
free(kernel->last_d_w);
|
||||
|
||||
free_matrix(input, kernel->rows, input_dim);
|
||||
free_matrix(output_cpu, kernel->columns, output_dim);
|
||||
|
Loading…
Reference in New Issue
Block a user