mirror of
https://github.com/augustin64/projet-tipe
synced 2025-01-23 15:16:26 +01:00
Add VGG16 architecture with 227x227 image input
This commit is contained in:
parent
4fcfba5b33
commit
a4b42445c1
@ -22,6 +22,13 @@ Network* create_network_alexnet(float learning_rate, int dropout, int activation
|
||||
*/
|
||||
Network* create_network_VGG16(float learning_rate, int dropout, int activation, int initialisation, int size_output);
|
||||
|
||||
|
||||
/*
|
||||
* Renvoie un réseau suivant l'architecture VGG16 originel pour prendre en entrée 3x227x227
|
||||
* et une sortie de taille 1 000
|
||||
*/
|
||||
Network* create_network_VGG16_227(float learning_rate, int dropout, int activation, int initialisation);
|
||||
|
||||
/*
|
||||
* Renvoie un réseau sans convolution, similaire à celui utilisé dans src/dense
|
||||
*/
|
||||
|
@ -66,6 +66,37 @@ Network* create_network_VGG16(float learning_rate, int dropout, int activation,
|
||||
return network;
|
||||
}
|
||||
|
||||
Network* create_network_VGG16_227(float learning_rate, int dropout, int activation, int initialisation) {
|
||||
Network* network = create_network(22, learning_rate, dropout, initialisation, 227, 3);
|
||||
add_convolution(network, 3, 64, 1, 1, activation); // Conv3-64
|
||||
add_convolution(network, 3, 64, 1, 1, activation); // Conv3-64
|
||||
add_average_pooling(network, 2, 2, 0); // Max Pool
|
||||
|
||||
add_convolution(network, 3, 128, 1, 1, activation); // Conv3-128
|
||||
add_convolution(network, 1, 128, 1, 0, activation); // Conv1-128
|
||||
add_average_pooling(network, 2, 2, 0); // Max Pool
|
||||
|
||||
add_convolution(network, 3, 256, 1, 1, activation); // Conv3-256
|
||||
add_convolution(network, 3, 256, 1, 1, activation); // Conv3-256
|
||||
add_convolution(network, 1, 256, 1, 0, activation); // Conv1-256
|
||||
add_average_pooling(network, 2, 2, 0); // Max Pool
|
||||
|
||||
add_convolution(network, 3, 512, 1, 1, activation); // Conv3-512
|
||||
add_convolution(network, 3, 512, 1, 1, activation); // Conv3-512
|
||||
add_convolution(network, 1, 512, 1, 0, activation); // Conv1-512
|
||||
add_average_pooling(network, 2, 2, 0); // Max Pool
|
||||
|
||||
add_convolution(network, 3, 512, 1, 1, activation); // Conv3-512
|
||||
add_convolution(network, 3, 512, 1, 1, activation); // Conv3-512
|
||||
add_convolution(network, 1, 512, 1, 0, activation); // Conv1-512
|
||||
add_average_pooling(network, 2, 2, 0); // Max Pool
|
||||
|
||||
add_dense_linearisation(network, 4096, activation);
|
||||
add_dense(network, 4096, activation);
|
||||
add_dense(network, 1000, SOFTMAX);
|
||||
return network;
|
||||
}
|
||||
|
||||
Network* create_simple_one(float learning_rate, int dropout, int activation, int initialisation, int input_width, int input_depth) {
|
||||
Network* network = create_network(3, learning_rate, dropout, initialisation, input_width, input_depth);
|
||||
add_dense_linearisation(network, 80, activation);
|
||||
|
Loading…
Reference in New Issue
Block a user