mirror of
https://github.com/augustin64/projet-tipe
synced 2025-01-23 23:26:25 +01:00
Add accuracy
This commit is contained in:
parent
6b32d2ba3e
commit
9b60e068ed
@ -7,6 +7,19 @@
|
||||
#include "mnist.c"
|
||||
|
||||
|
||||
int indice_max(float* tab, int n) {
|
||||
int indice = -1;
|
||||
float maxi = 0.;
|
||||
|
||||
for (int i=0; i < n; i++) {
|
||||
if (tab[i] > maxi) {
|
||||
maxi = tab[i];
|
||||
indice = i;
|
||||
}
|
||||
}
|
||||
return indice;
|
||||
}
|
||||
|
||||
void help(char* call) {
|
||||
printf("Usage: %s ( train | recognize ) [OPTIONS]\n\n", call);
|
||||
printf("OPTIONS:\n");
|
||||
@ -39,8 +52,12 @@ void train(int batches, int couches, int neurons, char* recovery, char* image_fi
|
||||
Reseau* reseau;
|
||||
|
||||
//int* repartition = malloc(sizeof(int)*couches);
|
||||
int nb_neurones_der = 10;
|
||||
int repartition[5] = {784, 100, 75, 40, nb_neurones_der};
|
||||
|
||||
float* sortie = malloc(sizeof(float)*nb_neurones_der);
|
||||
int* sortie_voulue;
|
||||
int repartition[5] = {784, 100, 75, 40, 10};
|
||||
float accuracy;
|
||||
//generer_repartition(couches, repartition);
|
||||
|
||||
/*
|
||||
@ -56,6 +73,8 @@ void train(int batches, int couches, int neurons, char* recovery, char* image_fi
|
||||
printf("Backup restaurée.\n");
|
||||
}
|
||||
|
||||
Couche* der_couche = reseau->couches[reseau->nb_couches-1];
|
||||
|
||||
// Chargement des images du set de données MNIST
|
||||
int* parameters = read_mnist_images_parameters(image_file);
|
||||
int nb_images = parameters[0];
|
||||
@ -67,15 +86,27 @@ void train(int batches, int couches, int neurons, char* recovery, char* image_fi
|
||||
|
||||
for (int i=0; i < batches; i++) {
|
||||
printf("Batch [%d/%d]", i, batches);
|
||||
accuracy = 0.;
|
||||
|
||||
for (int j=0; j < nb_images; j++) {
|
||||
printf("\rBatch [%d/%d]\tImage [%d/%d]",i, batches, j, nb_images);
|
||||
|
||||
ecrire_image_dans_reseau(images[j], reseau, height, width);
|
||||
sortie_voulue = creation_de_la_sortie_voulue(reseau, labels[j]);
|
||||
forward_propagation(reseau);
|
||||
|
||||
for (int k=0; k < nb_neurones_der; k++) {
|
||||
sortie[k] = der_couche->neurones[k]->activation;
|
||||
}
|
||||
if (indice_max(sortie, nb_neurones_der) == labels[j]) {
|
||||
accuracy += 1. / (float)nb_images;
|
||||
}
|
||||
|
||||
backward_propagation(reseau, sortie_voulue);
|
||||
|
||||
}
|
||||
// TODO: récupération accuracy
|
||||
printf("\rBatch [%d/%d]\tImage [%d/%d]\tAccuracy: %d%%\n",i, batches, nb_images, nb_images, 1);
|
||||
printf("\rBatch [%d/%d]\tImage [%d/%d]\tAccuracy: %0.1f%%\n",i, batches, nb_images, nb_images, accuracy*100);
|
||||
|
||||
modification_du_reseau_neuronal(reseau);
|
||||
ecrire_reseau(out, reseau);
|
||||
}
|
||||
@ -103,9 +134,11 @@ void recognize(char* modele, char* entree, char* sortie) {
|
||||
|
||||
ecrire_image_dans_reseau(images[i], reseau, height, width);
|
||||
forward_propagation(reseau);
|
||||
|
||||
for (int j=0; j < derniere_couche->nb_neurones; j++) {
|
||||
if (! strcmp(sortie, "json")) {
|
||||
printf("%f", derniere_couche->neurones[j]->activation); // CHECK: ->activation ou ->z
|
||||
|
||||
if (j+1 < derniere_couche->nb_neurones) {
|
||||
printf(", ");
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user