Add cnn knuth shuffle

This commit is contained in:
augustin64 2022-12-07 10:44:28 +01:00
parent 4057982adc
commit 963a4afcff
6 changed files with 64 additions and 28 deletions

View File

@ -7,13 +7,13 @@
* Met à jours les poids à partir de données obtenus après plusieurs backpropagations * Met à jours les poids à partir de données obtenus après plusieurs backpropagations
* Puis met à 0 tous les d_weights * Puis met à 0 tous les d_weights
*/ */
void update_weights(Network* network, Network* d_network); void update_weights(Network* network, Network* d_network, int nb_images);
/* /*
* Met à jours les biais à partir de données obtenus après plusieurs backpropagations * Met à jours les biais à partir de données obtenus après plusieurs backpropagations
* Puis met à 0 tous les d_bias * Puis met à 0 tous les d_bias
*/ */
void update_bias(Network* network, Network* d_network); void update_bias(Network* network, Network* d_network, int nb_images);
/* /*
* Met à 0 toutes les données de backpropagation de poids * Met à 0 toutes les données de backpropagation de poids

View File

@ -8,6 +8,16 @@
#ifndef DEF_UTILS_H #ifndef DEF_UTILS_H
#define DEF_UTILS_H #define DEF_UTILS_H
/*
* Échange deux éléments d'un tableau
*/
void swap(int* tab, int i, int j);
/*
* Mélange un tableau avec le mélange de Knuth
*/
void knuth_shuffle(int* tab, int n);
/* /*
* Vérifie si deux réseaux sont égaux * Vérifie si deux réseaux sont égaux
*/ */

View File

@ -32,6 +32,7 @@ void* train_thread(void* parameters) {
int*** images = param->images; int*** images = param->images;
int* labels = (int*)param->labels; int* labels = (int*)param->labels;
int* index = param->index;
int width = param->width; int width = param->width;
int height = param->height; int height = param->height;
@ -41,31 +42,31 @@ void* train_thread(void* parameters) {
float accuracy = 0.; float accuracy = 0.;
for (int i=start; i < start+nb_images; i++) { for (int i=start; i < start+nb_images; i++) {
if (dataset_type == 0) { if (dataset_type == 0) {
write_image_in_network_32(images[i], height, width, network->input[0][0]); write_image_in_network_32(images[index[i]], height, width, network->input[0][0]);
forward_propagation(network); forward_propagation(network);
maxi = indice_max(network->input[network->size-1][0][0], 10); maxi = indice_max(network->input[network->size-1][0][0], 10);
backward_propagation(network, labels[i]); backward_propagation(network, labels[i]);
if (maxi == labels[i]) { if (maxi == labels[index[i]]) {
accuracy += 1.; accuracy += 1.;
} }
} else { } else {
if (!param->dataset->images[i]) { if (!param->dataset->images[index[i]]) {
image = loadJpegImageFile(param->dataset->fileNames[i]); image = loadJpegImageFile(param->dataset->fileNames[index[i]]);
param->dataset->images[i] = image->lpData; param->dataset->images[index[i]] = image->lpData;
free(image); free(image);
} }
write_image_in_network_260(param->dataset->images[i], height, width, network->input[0]); write_image_in_network_260(param->dataset->images[index[i]], height, width, network->input[0]);
forward_propagation(network); forward_propagation(network);
maxi = indice_max(network->input[network->size-1][0][0], param->dataset->numCategories); maxi = indice_max(network->input[network->size-1][0][0], param->dataset->numCategories);
backward_propagation(network, param->dataset->labels[i]); backward_propagation(network, param->dataset->labels[index[i]]);
if (maxi == (int)param->dataset->labels[i]) { if (maxi == (int)param->dataset->labels[index[i]]) {
accuracy += 1.; accuracy += 1.;
} }
free(param->dataset->images[i]); free(param->dataset->images[index[i]]);
param->dataset->images[i] = NULL; param->dataset->images[index[i]] = NULL;
} }
} }
@ -85,9 +86,10 @@ void train(int dataset_type, char* images_file, char* labels_file, char* data_di
int nb_images_total_remaining; // Images restantes dans un batch int nb_images_total_remaining; // Images restantes dans un batch
int batches_epoques; // Batches par époque int batches_epoques; // Batches par époque
int*** images; int*** images; // Images sous forme de tableau de tableaux de tableaux de pixels (degré de gris, MNIST)
unsigned int* labels; unsigned int* labels; // Labels associés aux images du dataset MNIST
jpegDataset* dataset; jpegDataset* dataset; // Structure de données décrivant un dataset d'images jpeg
int* shuffle_index; // shuffle_index[i] contient le nouvel index de l'élément à l'emplacement i avant mélange
if (dataset_type == 0) { // Type MNIST if (dataset_type == 0) { // Type MNIST
// Chargement des images du set de données MNIST // Chargement des images du set de données MNIST
@ -109,7 +111,12 @@ void train(int dataset_type, char* images_file, char* labels_file, char* data_di
} }
// Initialisation du réseau // Initialisation du réseau
Network* network = create_network_lenet5(0.01, 0, TANH, GLOROT, input_dim, input_depth); Network* network = create_network_lenet5(1, 0, TANH, GLOROT, input_dim, input_depth);
shuffle_index = (int*)malloc(sizeof(int)*nb_images_total);
for (int i=0; i < nb_images_total; i++) {
shuffle_index[i] = i;
}
#ifdef USE_MULTITHREADING #ifdef USE_MULTITHREADING
int nb_remaining_images; // Nombre d'images restantes à lancer pour une série de threads int nb_remaining_images; // Nombre d'images restantes à lancer pour une série de threads
@ -139,6 +146,7 @@ void train(int dataset_type, char* images_file, char* labels_file, char* data_di
param->labels = NULL; param->labels = NULL;
} }
param->nb_images = BATCHES / nb_threads; param->nb_images = BATCHES / nb_threads;
param->index = shuffle_index;
} }
#else #else
// Création des paramètres donnés à l'unique // Création des paramètres donnés à l'unique
@ -163,6 +171,7 @@ void train(int dataset_type, char* images_file, char* labels_file, char* data_di
train_params->labels = NULL; train_params->labels = NULL;
} }
train_params->nb_images = BATCHES; train_params->nb_images = BATCHES;
train_params->index = shuffle_index;
#endif #endif
for (int i=0; i < epochs; i++) { for (int i=0; i < epochs; i++) {
@ -172,6 +181,7 @@ void train(int dataset_type, char* images_file, char* labels_file, char* data_di
// du multi-threading car chaque copie du réseau initiale sera légèrement différente // du multi-threading car chaque copie du réseau initiale sera légèrement différente
// et donnera donc des résultats différents sur les mêmes images. // et donnera donc des résultats différents sur les mêmes images.
accuracy = 0.; accuracy = 0.;
knuth_shuffle(shuffle_index, nb_images_total);
batches_epoques = div_up(nb_images_total, BATCHES); batches_epoques = div_up(nb_images_total, BATCHES);
nb_images_total_remaining = nb_images_total; nb_images_total_remaining = nb_images_total;
for (int j=0; j < batches_epoques; j++) { for (int j=0; j < batches_epoques; j++) {
@ -201,14 +211,16 @@ void train(int dataset_type, char* images_file, char* labels_file, char* data_di
pthread_join( tid[k], NULL ); pthread_join( tid[k], NULL );
accuracy += train_parameters[k]->accuracy / (float) nb_images_total; accuracy += train_parameters[k]->accuracy / (float) nb_images_total;
update_weights(network, train_parameters[k]->network); update_weights(network, train_parameters[k]->network, train_parameters[k]->nb_images);
update_bias(network, train_parameters[k]->network); update_bias(network, train_parameters[k]->network, train_parameters[k]->nb_images);
free_network(train_parameters[k]->network); free_network(train_parameters[k]->network);
} }
current_accuracy = accuracy * nb_images_total/((j+1)*BATCHES); current_accuracy = accuracy * nb_images_total/((j+1)*BATCHES);
printf("\rThreads [%d]\tÉpoque [%d/%d]\tImage [%d/%d]\tAccuracy: "YELLOW"%0.1f%%"RESET" ", nb_threads, i, epochs, BATCHES*(j+1), nb_images_total, current_accuracy*100); printf("\rThreads [%d]\tÉpoque [%d/%d]\tImage [%d/%d]\tAccuracy: "YELLOW"%0.1f%%"RESET" ", nb_threads, i, epochs, BATCHES*(j+1), nb_images_total, current_accuracy*100);
fflush(stdout); fflush(stdout);
#else #else
(void)nb_images_total_remaining; // Juste pour enlever un warning
train_params->start = j*BATCHES; train_params->start = j*BATCHES;
train_thread((void*)train_params); train_thread((void*)train_params);
@ -216,8 +228,8 @@ void train(int dataset_type, char* images_file, char* labels_file, char* data_di
accuracy += train_params->accuracy / (float) nb_images_total; accuracy += train_params->accuracy / (float) nb_images_total;
current_accuracy = accuracy * nb_images_total/((j+1)*BATCHES); current_accuracy = accuracy * nb_images_total/((j+1)*BATCHES);
update_weights(network, network); update_weights(network, network, train_params->nb_images);
update_bias(network, network); update_bias(network, network, train_params->nb_images);
printf("\rÉpoque [%d/%d]\tImage [%d/%d]\tAccuracy: "YELLOW"%0.1f%%"RESET" ", i, epochs, BATCHES*(j+1), nb_images_total, current_accuracy*100); printf("\rÉpoque [%d/%d]\tImage [%d/%d]\tAccuracy: "YELLOW"%0.1f%%"RESET" ", i, epochs, BATCHES*(j+1), nb_images_total, current_accuracy*100);
fflush(stdout); fflush(stdout);
@ -230,6 +242,7 @@ void train(int dataset_type, char* images_file, char* labels_file, char* data_di
#endif #endif
write_network(out, network); write_network(out, network);
} }
free(shuffle_index);
free_network(network); free_network(network);
#ifdef USE_MULTITHREADING #ifdef USE_MULTITHREADING
free(tid); free(tid);

View File

@ -3,7 +3,7 @@
#include "include/update.h" #include "include/update.h"
#include "include/struct.h" #include "include/struct.h"
void update_weights(Network* network, Network* d_network) { void update_weights(Network* network, Network* d_network, int nb_images) {
int n = network->size; int n = network->size;
int input_depth, input_width, output_depth, output_width, k_size; int input_depth, input_width, output_depth, output_width, k_size;
Kernel* k_i; Kernel* k_i;
@ -24,7 +24,7 @@ void update_weights(Network* network, Network* d_network) {
for (int b=0; b<output_depth; b++) { for (int b=0; b<output_depth; b++) {
for (int c=0; c<k_size; c++) { for (int c=0; c<k_size; c++) {
for (int d=0; d<k_size; d++) { for (int d=0; d<k_size; d++) {
cnn->w[a][b][c][d] -= network->learning_rate * d_cnn->d_w[a][b][c][d]; cnn->w[a][b][c][d] -= (network->learning_rate/nb_images) * d_cnn->d_w[a][b][c][d];
d_cnn->d_w[a][b][c][d] = 0; d_cnn->d_w[a][b][c][d] = 0;
} }
} }
@ -36,7 +36,7 @@ void update_weights(Network* network, Network* d_network) {
Kernel_nn* d_nn = dk_i->nn; Kernel_nn* d_nn = dk_i->nn;
for (int a=0; a<input_width; a++) { for (int a=0; a<input_width; a++) {
for (int b=0; b<output_width; b++) { for (int b=0; b<output_width; b++) {
nn->weights[a][b] -= network->learning_rate * d_nn->d_weights[a][b]; nn->weights[a][b] -= (network->learning_rate/nb_images) * d_nn->d_weights[a][b];
d_nn->d_weights[a][b] = 0; d_nn->d_weights[a][b] = 0;
} }
} }
@ -46,7 +46,7 @@ void update_weights(Network* network, Network* d_network) {
int input_size = input_width*input_width*input_depth; int input_size = input_width*input_width*input_depth;
for (int a=0; a<input_size; a++) { for (int a=0; a<input_size; a++) {
for (int b=0; b<output_width; b++) { for (int b=0; b<output_width; b++) {
nn->weights[a][b] -= network->learning_rate * d_nn->d_weights[a][b]; nn->weights[a][b] -= (network->learning_rate/nb_images) * d_nn->d_weights[a][b];
d_nn->d_weights[a][b] = 0; d_nn->d_weights[a][b] = 0;
} }
} }
@ -57,7 +57,7 @@ void update_weights(Network* network, Network* d_network) {
} }
} }
void update_bias(Network* network, Network* d_network) { void update_bias(Network* network, Network* d_network, int nb_images) {
int n = network->size; int n = network->size;
int output_width, output_depth; int output_width, output_depth;
@ -75,7 +75,7 @@ void update_bias(Network* network, Network* d_network) {
for (int a=0; a<output_depth; a++) { for (int a=0; a<output_depth; a++) {
for (int b=0; b<output_width; b++) { for (int b=0; b<output_width; b++) {
for (int c=0; c<output_width; c++) { for (int c=0; c<output_width; c++) {
cnn->bias[a][b][c] -= network->learning_rate * d_cnn->d_bias[a][b][c]; cnn->bias[a][b][c] -= (network->learning_rate/nb_images) * d_cnn->d_bias[a][b][c];
d_cnn->d_bias[a][b][c] = 0; d_cnn->d_bias[a][b][c] = 0;
} }
} }
@ -84,7 +84,7 @@ void update_bias(Network* network, Network* d_network) {
Kernel_nn* nn = k_i->nn; Kernel_nn* nn = k_i->nn;
Kernel_nn* d_nn = dk_i->nn; Kernel_nn* d_nn = dk_i->nn;
for (int a=0; a<output_width; a++) { for (int a=0; a<output_width; a++) {
nn->bias[a] -= network->learning_rate * d_nn->d_bias[a]; nn->bias[a] -= (network->learning_rate/nb_images) * d_nn->d_bias[a];
d_nn->d_bias[a] = 0; d_nn->d_bias[a] = 0;
} }
} else { // Pooling } else { // Pooling

View File

@ -17,6 +17,18 @@ if (network1->var != network2->var) {
return false; \ return false; \
} }
void swap(int* tab, int i, int j) {
int tmp = tab[i];
tab[i] = tab[j];
tab[j] = tmp;
}
void knuth_shuffle(int* tab, int n) {
for(int i=1; i < n; i++) {
swap(tab, i, rand() %i);
}
}
bool equals_networks(Network* network1, Network* network2) { bool equals_networks(Network* network1, Network* network2) {
int output_dim; int output_dim;
checkEquals(size, "size", -1); checkEquals(size, "size", -1);

View File

@ -245,6 +245,7 @@ void train(int epochs, int layers, int neurons, char* recovery, char* image_file
for (int j=0; j < nb_threads; j++) { for (int j=0; j < nb_threads; j++) {
free(train_parameters[j]); free(train_parameters[j]);
} }
free(shuffle_indices);
free(train_parameters); free(train_parameters);
// On libère les espaces mémoire utilisés spécialement sur le CPU // On libère les espaces mémoire utilisés spécialement sur le CPU
free(tid); free(tid);