From 95222fdf81a0f9dda1fd0ad034d3d22852c5665f Mon Sep 17 00:00:00 2001 From: augustin64 Date: Tue, 26 Apr 2022 16:47:43 +0200 Subject: [PATCH] Add preview fails option & loss stat --- src/mnist/main.c | 39 ++++++++++++++++++++++++++++++++------- 1 file changed, 32 insertions(+), 7 deletions(-) diff --git a/src/mnist/main.c b/src/mnist/main.c index b559d54..761894b 100644 --- a/src/mnist/main.c +++ b/src/mnist/main.c @@ -7,6 +7,19 @@ #include "neuron_io.c" #include "mnist.c" +void print_image(unsigned int width, unsigned int height, int** image, float* previsions) { + char tab[] = {' ', '.', ':', '%', '#', '\0'}; + + for (int i=0; i < height; i++) { + for (int j=0; j < width; j++) { + printf("%c", tab[image[i][j]/52]); + } + if (i < 10) { + printf("\t%d : %f", i, previsions[i]); + } + printf("\n"); + } +} int indice_max(float* tab, int n) { int indice = -1; @@ -26,7 +39,7 @@ void help(char* call) { printf("OPTIONS:\n"); printf("\ttrain:\n"); printf("\t\t--batches | -b [int]\tNombre de batches.\n"); - printf("\t\t--layers | -c [int]\tNombres de layers.\n"); + printf("\t\t--layers | -c [int]\tNombres de layers.\n"); printf("\t\t--neurons | -n [int]\tNombre de neurons sur la première layer.\n"); printf("\t\t--recover | -r [FILENAME]\tRécupérer depuis un modèle existant.\n"); printf("\t\t--images | -i [FILENAME]\tFichier contenant les images.\n"); @@ -40,6 +53,7 @@ void help(char* call) { printf("\t\t--images | -i [FILENAME]\tFichier contenant les images.\n"); printf("\t\t--labels | -l [FILENAME]\tFichier contenant les labels.\n"); printf("\t\t--modele | -m [FILENAME]\tFichier contenant le réseau de neurons.\n"); + printf("\t\t--preview-fails | -p\tAfficher les images ayant échoué.\n"); } @@ -58,11 +72,12 @@ void train(int batches, int layers, int neurons, char* recovery, char* image_fil //int* repartition = malloc(sizeof(int)*layers); int nb_neurons_der = 10; - int repartition[3] = {784, 32, nb_neurons_der}; + int repartition[2] = {784, nb_neurons_der}; float* sortie = malloc(sizeof(float)*nb_neurons_der); int* desired_output; float accuracy; + float loss; //generer_repartition(layers, repartition); /* @@ -92,6 +107,7 @@ void train(int batches, int layers, int neurons, char* recovery, char* image_fil for (int i=0; i < batches; i++) { printf("Batch [%d/%d]", i, batches); accuracy = 0.; + loss = 0.; for (int j=0; j < nb_images; j++) { printf("\rBatch [%d/%d]\tImage [%d/%d]",i, batches, j, nb_images); @@ -107,10 +123,11 @@ void train(int batches, int layers, int neurons, char* recovery, char* image_fil if (indice_max(sortie, nb_neurons_der) == labels[j]) { accuracy += 1. / (float)nb_images; } + loss += loss_computing(network, labels[j]) / (float)nb_images; free(desired_output); } network_modification(network, nb_images); - printf("\rBatch [%d/%d]\tImage [%d/%d]\tAccuracy: %0.1f%%\n",i, batches, nb_images, nb_images, accuracy*100); + printf("\rBatch [%d/%d]\tImage [%d/%d]\tAccuracy: %0.1f%%\tLoss: %f\n",i, batches, nb_images, nb_images, accuracy*100, loss); write_network(out, network); } deletion_of_network(network); @@ -186,7 +203,7 @@ void print_recognize(char* modele, char* entree, char* sortie) { } -void test(char* modele, char* fichier_images, char* fichier_labels) { +void test(char* modele, char* fichier_images, char* fichier_labels, bool preview_fails) { Network* network = read_network(modele); int nb_der_layer = network->layers[network->nb_layers-1]->nb_neurons; @@ -194,6 +211,7 @@ void test(char* modele, char* fichier_images, char* fichier_labels) { int* parameters = read_mnist_images_parameters(fichier_images); int nb_images = parameters[0]; + int*** images = read_mnist_images(fichier_images); float** resultats = recognize(modele, fichier_images); unsigned int* labels = read_mnist_labels(fichier_labels); @@ -201,7 +219,10 @@ void test(char* modele, char* fichier_images, char* fichier_labels) { for (int i=0; i < nb_images; i++) { if (indice_max(resultats[i], nb_der_layer) == labels[i]) { - accuracy += 1. / (float)nb_images; + accuracy += 1. / (float)nb_images; + } else { + printf("--- Image %d, %d --- Prévision: %d ---\n", i, labels[i], indice_max(resultats[i], nb_der_layer)); + print_image(28, 28, images[i], resultats[i]); } } printf("%d Images\tAccuracy: %0.1f%%\n", nb_images, accuracy*100); @@ -216,7 +237,7 @@ int main(int argc, char* argv[]) { } if (! strcmp(argv[1], "train")) { int batches = 100; - int layers = 3; + int layers = 2; int neurons = 784; char* images = NULL; char* labels = NULL; @@ -307,6 +328,7 @@ int main(int argc, char* argv[]) { char* modele = NULL; char* images = NULL; char* labels = NULL; + bool preview_fails = false; int i = 2; while (i < argc) { if ((! strcmp(argv[i], "--images"))||(! strcmp(argv[i], "-i"))) { @@ -318,9 +340,12 @@ int main(int argc, char* argv[]) { } else if ((! strcmp(argv[i], "--modele"))||(! strcmp(argv[i], "-m"))) { modele = argv[i+1]; i += 2; + } else if ((! strcmp(argv[i], "--preview-fails"))||(! strcmp(argv[i], "-p"))) { + preview_fails = true; + i++; } } - test(modele, images, labels); + test(modele, images, labels, preview_fails); exit(0); } printf("Option choisie non reconnue: %s\n", argv[1]);