Rename src/mnist_cnn -> src/cnn

This commit is contained in:
augustin64 2022-09-12 17:56:44 +02:00
parent 3643f4c50e
commit 8b4b7b19f6
13 changed files with 63 additions and 62 deletions

View File

@ -15,19 +15,22 @@ Network* create_network(int max_size, int dropout, int initialisation, int input
network->size = 1; network->size = 1;
network->input = (float****)malloc(sizeof(float***)*max_size); network->input = (float****)malloc(sizeof(float***)*max_size);
network->kernel = (Kernel**)malloc(sizeof(Kernel*)*(max_size-1)); network->kernel = (Kernel**)malloc(sizeof(Kernel*)*(max_size-1));
network->dim = (int**)malloc(sizeof(int*)*max_size); network->width = (int*)malloc(sizeof(int*)*max_size);
network->depth = (int*)malloc(sizeof(int*)*max_size);
for (int i=0; i < max_size; i++) { for (int i=0; i < max_size; i++) {
network->dim[i] = (int*)malloc(sizeof(int)*2);
network->kernel[i] = (Kernel*)malloc(sizeof(Kernel)); network->kernel[i] = (Kernel*)malloc(sizeof(Kernel));
} }
network->dim[0][0] = input_dim; network->width[0] = input_dim;
network->dim[0][1] = input_depth; network->depth[0] = input_depth;
network->kernel[0]->nn = NULL;
network->kernel[0]->cnn = NULL;
create_a_cube_input_layer(network, 0, input_depth, input_dim); create_a_cube_input_layer(network, 0, input_depth, input_dim);
return network; return network;
} }
Network* create_network_lenet5(int dropout, int activation, int initialisation) { Network* create_network_lenet5(int dropout, int activation, int initialisation) {
Network* network = create_network(8, dropout, initialisation, 32, 1); Network* network = create_network(8, dropout, initialisation, 32, 1);
network->kernel[0]->activation = activation;
add_convolution(network, 6, 5, activation); add_convolution(network, 6, 5, activation);
add_average_pooling(network, 2, activation); add_average_pooling(network, 2, activation);
add_convolution(network, 16, 5, activation); add_convolution(network, 16, 5, activation);
@ -46,8 +49,8 @@ void create_a_cube_input_layer(Network* network, int pos, int depth, int dim) {
network->input[pos][i][j] = (float*)malloc(sizeof(float)*dim); network->input[pos][i][j] = (float*)malloc(sizeof(float)*dim);
} }
} }
network->dim[pos][0] = dim; network->width[pos] = dim;
network->dim[pos][1] = depth; network->depth[pos] = depth;
} }
void create_a_line_input_layer(Network* network, int pos, int dim) { void create_a_line_input_layer(Network* network, int pos, int dim) {
@ -65,7 +68,7 @@ void add_average_pooling(Network* network, int kernel_size, int activation) {
network->kernel[n]->cnn = NULL; network->kernel[n]->cnn = NULL;
network->kernel[n]->nn = NULL; network->kernel[n]->nn = NULL;
network->kernel[n]->activation = activation + 100*kernel_size; network->kernel[n]->activation = activation + 100*kernel_size;
create_a_cube_input_layer(network, n, network->dim[n-1][1], network->dim[n-1][0]/2); create_a_cube_input_layer(network, n, network->depth[n-1], network->width[n-1]/2);
network->size++; network->size++;
} }
@ -78,7 +81,7 @@ void add_average_pooling_flatten(Network* network, int kernel_size, int activati
network->kernel[n]->cnn = NULL; network->kernel[n]->cnn = NULL;
network->kernel[n]->nn = NULL; network->kernel[n]->nn = NULL;
network->kernel[n]->activation = activation + 100*kernel_size; network->kernel[n]->activation = activation + 100*kernel_size;
int dim = (network->dim[n-1][0]*network->dim[n-1][0]*network->dim[n-1][1])/(kernel_size*kernel_size); int dim = (network->width[n-1]*network->width[n-1]*network->depth[n-1])/(kernel_size*kernel_size);
create_a_line_input_layer(network, n, dim); create_a_line_input_layer(network, n, dim);
network->size++; network->size++;
} }
@ -89,7 +92,7 @@ void add_convolution(Network* network, int nb_filter, int kernel_size, int activ
printf("Impossible de rajouter une couche de convolution, le réseau est déjà plein\n"); printf("Impossible de rajouter une couche de convolution, le réseau est déjà plein\n");
return; return;
} }
int r = network->dim[n-1][1]; int r = network->depth[n-1];
int c = nb_filter; int c = nb_filter;
network->kernel[n]->nn = NULL; network->kernel[n]->nn = NULL;
network->kernel[n]->activation = activation; network->kernel[n]->activation = activation;
@ -123,9 +126,9 @@ void add_convolution(Network* network, int nb_filter, int kernel_size, int activ
cnn->d_bias[i][j] = (float*)malloc(sizeof(float)*kernel_size); cnn->d_bias[i][j] = (float*)malloc(sizeof(float)*kernel_size);
} }
} }
create_a_cube_input_layer(network, n, c, network->dim[n-1][0] - 2*(kernel_size/2)); create_a_cube_input_layer(network, n, c, network->width[n-1] - 2*(kernel_size/2));
int n_int = network->dim[n-1][0]*network->dim[n-1][0]*network->dim[n-1][1]; int n_int = network->width[n-1]*network->width[n-1]*network->depth[n-1];
int n_out = network->dim[n][0]*network->dim[n][0]*network->dim[n][1]; int n_out = network->width[n]*network->width[n]*network->depth[n];
initialisation_3d_matrix(network->initialisation, cnn->bias, c, kernel_size, kernel_size, n_int+n_out); initialisation_3d_matrix(network->initialisation, cnn->bias, c, kernel_size, kernel_size, n_int+n_out);
initialisation_3d_matrix(ZERO, cnn->d_bias, c, kernel_size, kernel_size, n_int+n_out); initialisation_3d_matrix(ZERO, cnn->d_bias, c, kernel_size, kernel_size, n_int+n_out);
initialisation_4d_matrix(network->initialisation, cnn->w, r, c, kernel_size, kernel_size, n_int+n_out); initialisation_4d_matrix(network->initialisation, cnn->w, r, c, kernel_size, kernel_size, n_int+n_out);

View File

@ -19,7 +19,7 @@ void free_a_line_input_layer(Network* network, int pos) {
} }
void free_average_pooling(Network* network, int pos) { void free_average_pooling(Network* network, int pos) {
free_a_cube_input_layer(network, pos, network->dim[pos-1][1], network->dim[pos-1][0]/2); free_a_cube_input_layer(network, pos, network->depth[pos-1], network->width[pos-1]/2);
} }
void free_average_pooling_flatten(Network* network, int pos) { void free_average_pooling_flatten(Network* network, int pos) {
@ -27,57 +27,57 @@ void free_average_pooling_flatten(Network* network, int pos) {
} }
void free_convolution(Network* network, int pos) { void free_convolution(Network* network, int pos) {
int c = network->kernel[pos].cnn->columns; int c = network->kernel[pos]->cnn->columns;
int k_size = network->kernel[pos].cnn->k_size; int k_size = network->kernel[pos]->cnn->k_size;
int r = network->kernel[pos].cnn->rows; int r = network->kernel[pos]->cnn->rows;
free_a_cube_input_layer(network, pos, c, network->dim[pos-1][0] - 2*(k_size/2)); free_a_cube_input_layer(network, pos, c, network->width[pos-1] - 2*(k_size/2));
for (int i=0; i < c; i++) { for (int i=0; i < c; i++) {
for (int j=0; j < k_size; j++) { for (int j=0; j < k_size; j++) {
free(network->kernel[pos].cnn->bias[i][j]); free(network->kernel[pos]->cnn->bias[i][j]);
free(network->kernel[pos].cnn->d_bias[i][j]); free(network->kernel[pos]->cnn->d_bias[i][j]);
} }
free(network->kernel[pos].cnn->bias[i]); free(network->kernel[pos]->cnn->bias[i]);
free(network->kernel[pos].cnn->d_bias[i]); free(network->kernel[pos]->cnn->d_bias[i]);
} }
free(network->kernel[pos].cnn->bias); free(network->kernel[pos]->cnn->bias);
free(network->kernel[pos].cnn->d_bias); free(network->kernel[pos]->cnn->d_bias);
for (int i=0; i < r; i++) { for (int i=0; i < r; i++) {
for (int j=0; j < c; j++) { for (int j=0; j < c; j++) {
for (int k=0; k < k_size; k++) { for (int k=0; k < k_size; k++) {
free(network->kernel[pos].cnn->w[i][j][k]); free(network->kernel[pos]->cnn->w[i][j][k]);
free(network->kernel[pos].cnn->d_w[i][j][k]); free(network->kernel[pos]->cnn->d_w[i][j][k]);
} }
free(network->kernel[pos].cnn->w[i][j]); free(network->kernel[pos]->cnn->w[i][j]);
free(network->kernel[pos].cnn->d_w[i][j]); free(network->kernel[pos]->cnn->d_w[i][j]);
} }
free(network->kernel[pos].cnn->w[i]); free(network->kernel[pos]->cnn->w[i]);
free(network->kernel[pos].cnn->d_w[i]); free(network->kernel[pos]->cnn->d_w[i]);
} }
free(network->kernel[pos].cnn->w); free(network->kernel[pos]->cnn->w);
free(network->kernel[pos].cnn->d_w); free(network->kernel[pos]->cnn->d_w);
free(network->kernel[pos].cnn); free(network->kernel[pos]->cnn);
} }
void free_dense(Network* network, int pos) { void free_dense(Network* network, int pos) {
free_a_line_input_layer(network, pos); free_a_line_input_layer(network, pos);
int dim = network->kernel[pos].nn->output_units; int dim = network->kernel[pos]->nn->output_units;
for (int i=0; i < dim; i++) { for (int i=0; i < dim; i++) {
free(network->kernel[pos].nn->weights[i]); free(network->kernel[pos]->nn->weights[i]);
free(network->kernel[pos].nn->d_weights[i]); free(network->kernel[pos]->nn->d_weights[i]);
} }
free(network->kernel[pos].nn->weights); free(network->kernel[pos]->nn->weights);
free(network->kernel[pos].nn->d_weights); free(network->kernel[pos]->nn->d_weights);
free(network->kernel[pos].nn->bias); free(network->kernel[pos]->nn->bias);
free(network->kernel[pos].nn->d_bias); free(network->kernel[pos]->nn->d_bias);
free(network->kernel[pos].nn); free(network->kernel[pos]->nn);
} }
void free_network_creation(Network* network) { void free_network_creation(Network* network) {
free_a_cube_input_layer(network, 0, network->dim[0][1], network->dim[0][0]); free_a_cube_input_layer(network, 0, network->depth[0], network->width[0]);
for (int i=0; i < network->max_size; i++) { for (int i=0; i < network->max_size; i++) {
free(network->dim[i]); free(network->dim[i]);

View File

@ -86,6 +86,6 @@ void choose_apply_function_input(int activation, float*** input, int depth, int
apply_function_input(tanh_, input, depth, rows, columns); apply_function_input(tanh_, input, depth, rows, columns);
} }
else { else {
printf("Erreur, fonction d'activation inconnue"); printf("Erreur, fonction d'activation inconnue: %d\n", activation);
} }
} }

View File

@ -7,7 +7,7 @@
#include "creation.c" #include "creation.c"
#include "make.c" #include "make.c"
#include "cnn.h" #include "main.h"
// Augmente les dimensions de l'image d'entrée // Augmente les dimensions de l'image d'entrée
#define PADDING_INPUT 2 #define PADDING_INPUT 2
@ -35,14 +35,14 @@ void forward_propagation(Network* network) {
for (int i=0; i < network->size-1; i++) { for (int i=0; i < network->size-1; i++) {
if (network->kernel[i]->nn==NULL && network->kernel[i]->cnn!=NULL) { //CNN if (network->kernel[i]->nn==NULL && network->kernel[i]->cnn!=NULL) { //CNN
output = network->input[i+1]; output = network->input[i+1];
output_dim = network->dim[i+1][0]; output_dim = network->width[i+1];
output_depth = network->dim[i+1][1]; output_depth = network->depth[i+1];
make_convolution(network->input[i], network->kernel[i]->cnn, output, output_dim); make_convolution(network->input[i], network->kernel[i]->cnn, output, output_dim);
choose_apply_function_input(network->kernel[i]->activation, output, output_depth, output_dim, output_dim); choose_apply_function_input(network->kernel[i]->activation, output, output_depth, output_dim, output_dim);
} }
else if (network->kernel[i]->nn!=NULL && network->kernel[i]->cnn==NULL) { //NN else if (network->kernel[i]->nn!=NULL && network->kernel[i]->cnn==NULL) { //NN
make_fully_connected(network->input[i][0][0], network->kernel[i]->nn, network->input[i+1][0][0], network->dim[i][0], network->dim[i+1][0]); make_fully_connected(network->input[i][0][0], network->kernel[i]->nn, network->input[i+1][0][0], network->width[i], network->width[i+1]);
choose_apply_function_input(network->kernel[i]->activation, network->input[i+1], 1, 1, network->dim[i+1][0]); choose_apply_function_input(network->kernel[i]->activation, network->input[i+1], 1, 1, network->width[i+1]);
} }
else { //Pooling else { //Pooling
if (network->size-2==i) { if (network->size-2==i) {
@ -50,12 +50,12 @@ void forward_propagation(Network* network) {
return; return;
} }
if (network->kernel[i+1]->nn!=NULL && network->kernel[i+1]->cnn==NULL) { if (network->kernel[i+1]->nn!=NULL && network->kernel[i+1]->cnn==NULL) {
make_average_pooling_flattened(network->input[i], network->input[i+1][0][0], network->kernel[i]->activation/100, network->dim[i][1], network->dim[i][0]); make_average_pooling_flattened(network->input[i], network->input[i+1][0][0], network->kernel[i]->activation/100, network->depth[i], network->width[i]);
choose_apply_function_input(network->kernel[i]->activation%100, network->input[i+1], 1, 1, network->dim[i+1][0]); choose_apply_function_input(network->kernel[i]->activation%100, network->input[i+1], 1, 1, network->width[i+1]);
} }
else if (network->kernel[i+1]->nn==NULL && network->kernel[i+1]->cnn!=NULL) { else if (network->kernel[i+1]->nn==NULL && network->kernel[i+1]->cnn!=NULL) {
make_average_pooling(network->input[i], network->input[i+1], network->kernel[i]->activation/100, network->dim[i+1][1], network->dim[i+1][0]); make_average_pooling(network->input[i], network->input[i+1], network->kernel[i]->activation/100, network->depth[i+1], network->width[i+1]);
choose_apply_function_input(network->kernel[i]->activation%100, network->input[i+1], network->dim[i+1][1], network->dim[i+1][0], network->dim[i+1][0]); choose_apply_function_input(network->kernel[i]->activation%100, network->input[i+1], network->depth[i+1], network->width[i+1], network->width[i+1]);
} }
else { else {
printf("Le réseau ne peut pas contenir deux pooling layers collées"); printf("Le réseau ne peut pas contenir deux pooling layers collées");
@ -68,12 +68,12 @@ void forward_propagation(Network* network) {
void backward_propagation(Network* network, float wanted_number) { void backward_propagation(Network* network, float wanted_number) {
float* wanted_output = generate_wanted_output(wanted_number); float* wanted_output = generate_wanted_output(wanted_number);
int n = network->size-1; int n = network->size-1;
float loss = compute_cross_entropy_loss(network->input[n][0][0], wanted_output, network->dim[n][0]); float loss = compute_cross_entropy_loss(network->input[n][0][0], wanted_output, network->width[n]);
for (int i=n; i >= 0; i--) { for (int i=n; i >= 0; i--) {
if (i==n) { if (i==n) {
if (network->kernel[i]->activation == SOFTMAX) { if (network->kernel[i]->activation == SOFTMAX) {
int l2 = network->dim[i][0]; // Taille de la dernière couche int l2 = network->width[i]; // Taille de la dernière couche
int l1 = network->dim[i-1][0]; int l1 = network->width[i-1];
for (int j=0; j < l2; j++) { for (int j=0; j < l2; j++) {
} }

View File

@ -1,7 +1,7 @@
#include "struct.h" #include "struct.h"
#ifndef DEF_CNN_H #ifndef DEF_MAIN_H
#define DEF_CNN_H #define DEF_MAIN_H
/* /*

View File

@ -13,7 +13,7 @@ typedef struct Kernel_cnn {
} Kernel_cnn; } Kernel_cnn;
typedef struct Kernel_nn { typedef struct Kernel_nn {
int input_units; int input_units; // Nombre d'éléments en entrée
int output_units; int output_units;
float* bias; // De dimension output_units float* bias; // De dimension output_units
float* d_bias; // De dimension output_units float* d_bias; // De dimension output_units
@ -27,18 +27,16 @@ typedef struct Kernel {
int activation; // Vaut l'activation sauf pour un pooling où il: vaut kernel_size*100 + activation int activation; // Vaut l'activation sauf pour un pooling où il: vaut kernel_size*100 + activation
} Kernel; } Kernel;
typedef struct Layer {
} Layer;
typedef struct Network{ typedef struct Network{
int dropout; // Contient la probabilité d'abandon entre 0 et 100 (inclus) int dropout; // Contient la probabilité d'abandon entre 0 et 100 (inclus)
int initialisation; // Contient le type d'initialisation int initialisation; // Contient le type d'initialisation
int max_size; // Taille maximale du réseau après initialisation int max_size; // Taille maximale du réseau après initialisation
int size; // Taille actuelle du réseau int size; // Taille actuelle du réseau
int** dim; // Contient les dimensions de l'input (width*depth) int* width; // Contient les dimensions de l'input (width*depth)
int* depth; // Contient les dimensions de l'input (width*depth)
Kernel** kernel; Kernel** kernel;
float**** input; float**** input; // Équivalent du z
} Network; } Network;
#endif #endif