Replace numbers by defines

This commit is contained in:
julienChemillier 2023-03-08 20:48:34 +01:00
parent 4aea4d6321
commit 89402b9ee6
12 changed files with 54 additions and 39 deletions

View File

@ -27,7 +27,7 @@ void softmax_backward_cross_entropy(float* input, float* output, int size) {
}
}
void backward_2d_pooling(float*** input, float*** output, int input_width, int output_width, int depth) {
void backward_average_pooling(float*** input, float*** output, int input_width, int output_width, int depth) {
/* Input et output ont la même profondeur (depth) */
//int size = output_width - input_width +1;

View File

@ -115,7 +115,7 @@ void forward_propagation(Network* network) {
apply_function_to_matrix(activation, output, output_depth, output_width);
}
else if (k_i->nn) { // Full connection
if (k_i->linearisation == 0) { // Vecteur -> Vecteur
if (k_i->linearisation == DOESNT_LINEARISE) { // Vecteur -> Vecteur
make_dense(k_i->nn, input[0][0], output[0][0], input_width, output_width);
} else { // Matrice -> Vecteur
make_dense_linearized(k_i->nn, input, output[0][0], input_depth, input_width, output_width);
@ -128,9 +128,9 @@ void forward_propagation(Network* network) {
printf_error("Le réseau ne peut pas finir par un pooling layer\n");
return;
} else { // Pooling sur une matrice
if (pooling == 1) {
if (pooling == AVG_POOLING) {
make_average_pooling(input, output, input_width/output_width, output_depth, output_width);
} else if (pooling == 2) {
} else if (pooling == MAX_POOLING) {
make_max_pooling(input, output, input_width/output_width, output_depth, output_width);
} else {
printf_error("Impossible de reconnaître le type de couche de pooling: ");
@ -178,13 +178,17 @@ void backward_propagation(Network* network, int wanted_number) {
backward_convolution(k_i->cnn, input, input_z, output, input_depth, input_width, output_depth, output_width, d_f, i==0);
} else if (k_i->nn) { // Full connection
ptr d_f = get_activation_function(-activation);
if (k_i->linearisation == 0) { // Vecteur -> Vecteur
if (k_i->linearisation == DOESNT_LINEARISE) { // Vecteur -> Vecteur
backward_dense(k_i->nn, input[0][0], input_z[0][0], output[0][0], input_width, output_width, d_f, i==0);
} else { // Matrice -> vecteur
backward_linearisation(k_i->nn, input, input_z, output[0][0], input_depth, input_width, output_width, d_f);
}
} else { // Pooling
backward_2d_pooling(input, output, input_width, output_width, input_depth); // Depth pour input et output a la même valeur
if (k_i->pooling == AVG_POOLING) {
backward_average_pooling(input, output, input_width, output_width, input_depth); // Depth pour input et output a la même valeur
} else {
printf_error("La backpropagation de ce pooling n'est pas encore implémentée\n");
}
}
}
}

View File

@ -11,7 +11,7 @@
Network* create_network(int max_size, float learning_rate, int dropout, int initialisation, int input_dim, int input_depth) {
if (dropout < 0 || dropout > 100) {
printf_error("la probabilité de dropout n'est pas respecté, elle doit être comprise entre 0 et 100\n");
printf_error("La probabilité de dropout n'est pas respecté, elle doit être comprise entre 0 et 100\n");
}
Network* network = (Network*)nalloc(1, sizeof(Network));
network->learning_rate = learning_rate;
@ -27,7 +27,7 @@ Network* create_network(int max_size, float learning_rate, int dropout, int init
for (int i=0; i < max_size-1; i++) {
network->kernel[i] = (Kernel*)nalloc(1, sizeof(Kernel));
}
network->kernel[0]->linearisation = 0;
network->kernel[0]->linearisation = DOESNT_LINEARISE;
network->width[0] = input_dim;
network->depth[0] = input_depth;
network->kernel[0]->nn = NULL;
@ -41,9 +41,9 @@ Network* create_network_lenet5(float learning_rate, int dropout, int activation,
Network* network = create_network(8, learning_rate, dropout, initialisation, input_dim, input_depth);
network->kernel[0]->activation = activation;
add_convolution(network, 6, 28, activation);
add_2d_average_pooling(network, 14);
add_average_pooling(network, 14);
add_convolution(network, 16, 10, activation);
add_2d_average_pooling(network, 5);
add_average_pooling(network, 5);
add_dense_linearisation(network, 120, activation);
add_dense(network, 84, activation);
add_dense(network, 10, SOFTMAX);
@ -98,7 +98,7 @@ void create_a_line_input_z_layer(Network* network, int pos, int dim) {
network->depth[pos] = 1;
}
void add_2d_average_pooling(Network* network, int dim_output) {
void add_average_pooling(Network* network, int dim_output) {
int n = network->size;
int k_pos = n-1;
int dim_input = network->width[k_pos];
@ -113,14 +113,14 @@ void add_2d_average_pooling(Network* network, int dim_output) {
network->kernel[k_pos]->cnn = NULL;
network->kernel[k_pos]->nn = NULL;
network->kernel[k_pos]->activation = IDENTITY; // Ne contient pas de fonction d'activation
network->kernel[k_pos]->linearisation = 0;
network->kernel[k_pos]->pooling = 1;
network->kernel[k_pos]->linearisation = DOESNT_LINEARISE;
network->kernel[k_pos]->pooling = AVG_POOLING;
create_a_cube_input_layer(network, n, network->depth[n-1], network->width[n-1]/2);
create_a_cube_input_z_layer(network, n, network->depth[n-1], network->width[n-1]/2); // Will it be used ?
network->size++;
}
void add_2d_max_pooling(Network* network, int dim_output) {
void add_max_pooling(Network* network, int dim_output) {
int n = network->size;
int k_pos = n-1;
int dim_input = network->width[k_pos];
@ -135,8 +135,8 @@ void add_2d_max_pooling(Network* network, int dim_output) {
network->kernel[k_pos]->cnn = NULL;
network->kernel[k_pos]->nn = NULL;
network->kernel[k_pos]->activation = IDENTITY; // Ne contient pas de fonction d'activation
network->kernel[k_pos]->linearisation = 0;
network->kernel[k_pos]->pooling = 2;
network->kernel[k_pos]->linearisation = DOESNT_LINEARISE;
network->kernel[k_pos]->pooling = MAX_POOLING;
create_a_cube_input_layer(network, n, network->depth[n-1], network->width[n-1]/2);
create_a_cube_input_z_layer(network, n, network->depth[n-1], network->width[n-1]/2); // Will it be used ?
network->size++;
@ -156,8 +156,8 @@ void add_convolution(Network* network, int depth_output, int dim_output, int act
int kernel_size = dim_input - dim_output +1;
network->kernel[k_pos]->nn = NULL;
network->kernel[k_pos]->activation = activation;
network->kernel[k_pos]->linearisation = 0;
network->kernel[k_pos]->pooling = 0;
network->kernel[k_pos]->linearisation = DOESNT_LINEARISE;
network->kernel[k_pos]->pooling = NO_POOLING;
network->kernel[k_pos]->cnn = (Kernel_cnn*)nalloc(1, sizeof(Kernel_cnn));
Kernel_cnn* cnn = network->kernel[k_pos]->cnn;
@ -215,8 +215,8 @@ void add_dense(Network* network, int size_output, int activation) {
network->kernel[k_pos]->nn = (Kernel_nn*)nalloc(1, sizeof(Kernel_nn));
Kernel_nn* nn = network->kernel[k_pos]->nn;
network->kernel[k_pos]->activation = activation;
network->kernel[k_pos]->linearisation = 0;
network->kernel[k_pos]->pooling = 0;
network->kernel[k_pos]->linearisation = DOESNT_LINEARISE;
network->kernel[k_pos]->pooling = NO_POOLING;
nn->size_input = size_input;
nn->size_output = size_output;
nn->bias = (float*)nalloc(size_output, sizeof(float));
@ -235,7 +235,7 @@ void add_dense(Network* network, int size_output, int activation) {
}
}
initialisation_1d_matrix(network->initialisation, nn->bias, size_output, size_input);
initialisation_1d_matrix(network->initialisation, nn->bias, size_output, size_input, size_output);
initialisation_2d_matrix(network->initialisation, nn->weights, size_input, size_output, size_input, size_output);
create_a_line_input_layer(network, n, size_output);
create_a_line_input_z_layer(network, n, size_output);
@ -256,8 +256,8 @@ void add_dense_linearisation(Network* network, int size_output, int activation)
network->kernel[k_pos]->nn = (Kernel_nn*)nalloc(1, sizeof(Kernel_nn));
Kernel_nn* nn = network->kernel[k_pos]->nn;
network->kernel[k_pos]->activation = activation;
network->kernel[k_pos]->linearisation = 1;
network->kernel[k_pos]->pooling = 0;
network->kernel[k_pos]->linearisation = DO_LINEARISE;
network->kernel[k_pos]->pooling = NO_POOLING;
nn->size_input = size_input;
nn->size_output = size_output;
@ -275,7 +275,7 @@ void add_dense_linearisation(Network* network, int size_output, int activation)
nn->d_weights[i][j] = 0.;
}
}
initialisation_1d_matrix(network->initialisation, nn->bias, size_output, size_input);
initialisation_1d_matrix(network->initialisation, nn->bias, size_output, size_input, size_output);
initialisation_2d_matrix(network->initialisation, nn->weights, size_input, size_output, size_input, size_output);
create_a_line_input_layer(network, n, size_output);
create_a_line_input_z_layer(network, n, size_output);

View File

@ -27,7 +27,7 @@ void free_a_line_input_layer(Network* network, int pos) {
gree(network->input_z[pos]);
}
void free_2d_pooling(Network* network, int pos) {
void free_pooling(Network* network, int pos) {
free_a_cube_input_layer(network, pos+1, network->depth[pos+1], network->width[pos+1]);
}
@ -120,13 +120,13 @@ void free_network(Network* network) {
if (network->kernel[i]->cnn != NULL) { // Convolution
free_convolution(network, i);
} else if (network->kernel[i]->nn != NULL) {
if (network->kernel[i]->linearisation == 0) { // Dense non linearized
if (network->kernel[i]->linearisation == DOESNT_LINEARISE) { // Dense non linearized
free_dense(network, i);
} else { // Dense linearisation
free_dense_linearisation(network, i);
}
} else { // Pooling
free_2d_pooling(network, i);
free_pooling(network, i);
}
}
free_network_creation(network);

View File

@ -29,7 +29,7 @@ void softmax_backward_cross_entropy(float* input, float* output, int size);
* Transfert les informations d'erreur à travers une couche d'average pooling
* en considérant cross_entropy comme fonction d'erreur
*/
void backward_2d_pooling(float*** input, float*** output, int input_width, int output_width, int depth);
void backward_average_pooling(float*** input, float*** output, int input_width, int output_width, int depth);
/*
* Transfert les informations d'erreur à travers une couche fully connected

View File

@ -37,12 +37,12 @@ void create_a_line_input_layer(Network* network, int pos, int dim);
/*
* Ajoute au réseau une couche d'average pooling valide de dimension dim*dim
*/
void add_2d_average_pooling(Network* network, int dim_output);
void add_average_pooling(Network* network, int dim_output);
/*
* Ajoute au réseau une couche de max pooling valide de dimension dim*dim
*/
void add_2d_max_pooling(Network* network, int dim_output);
void add_max_pooling(Network* network, int dim_output);
/*
* Ajoute au réseau une couche de convolution dim*dim et initialise les kernels

View File

@ -16,9 +16,9 @@ void free_a_cube_input_layer(Network* network, int pos, int depth, int dim);
void free_a_line_input_layer(Network* network, int pos);
/*
* Libère l'espace mémoire alloué dans 'add_2d_average_pooling' ou 'add_2d_max_pooling' (creation.c)
* Libère l'espace mémoire alloué dans 'add_average_pooling' ou 'add_max_pooling' (creation.c)
*/
void free_2d_pooling(Network* network, int pos);
void free_pooling(Network* network, int pos);
/*
* Libère l'espace mémoire dans 'add_convolution' (creation.c)

View File

@ -1,6 +1,13 @@
#ifndef DEF_STRUCT_H
#define DEF_STRUCT_H
#define NO_POOLING 0
#define AVG_POOLING 1
#define MAX_POOLING 2
#define DOESNT_LINEARISE 0
#define DO_LINEARISE 1
typedef struct Kernel_cnn {
// Noyau ayant une couche matricielle en sortie
int k_size; // k_size = dim_input - dim_output + 1

View File

@ -12,6 +12,10 @@
#define MAGIC_NUMBER 1012
#define CNN 0
#define NN 1
#define POOLING 2
#define bufferAdd(val) {buffer[indice_buffer] = val; indice_buffer++;}
void write_network(char* filename, Network* network) {
@ -226,7 +230,7 @@ Network* read_network(char* filename) {
Kernel* read_kernel(int type_couche, int output_dim, FILE* ptr) {
Kernel* kernel = (Kernel*)nalloc(1, sizeof(Kernel));
if (type_couche == 0) { // Cas du CNN
if (type_couche == CNN) { // Cas du CNN
// Lecture du "Pré-corps"
kernel->cnn = (Kernel_cnn*)nalloc(1, sizeof(Kernel_cnn));
kernel->nn = NULL;
@ -278,7 +282,7 @@ Kernel* read_kernel(int type_couche, int output_dim, FILE* ptr) {
}
}
}
} else if (type_couche == 1) { // Cas du NN
} else if (type_couche == NN) { // Cas du NN
// Lecture du "Pré-corps"
kernel->nn = (Kernel_nn*)nalloc(1, sizeof(Kernel_nn));
kernel->cnn = NULL;
@ -313,7 +317,7 @@ Kernel* read_kernel(int type_couche, int output_dim, FILE* ptr) {
nn->d_weights[i][j] = 0.;
}
}
} else if (type_couche == 2) { // Cas du Pooling Layer
} else if (type_couche == POOLING) { // Cas du Pooling Layer
uint32_t pooling, linearisation;
(void) !fread(&linearisation, sizeof(linearisation), 1, ptr);
(void) !fread(&pooling, sizeof(pooling), 1, ptr);

View File

@ -50,7 +50,7 @@ void print_kernel_cnn(Kernel_cnn* ker, int depth_input, int dim_input, int depth
void print_pooling(int size, int pooling) {
print_bar;
purple;
if (pooling == 1) {
if (pooling == AVG_POOLING) {
printf("-------Average Pooling %dx%d-------\n", size ,size);
} else {
printf("-------Max Pooling %dx%d-------\n", size ,size);

View File

@ -43,7 +43,7 @@ void update_weights(Network* network, Network* d_network) {
}
}
} else if (k_i->nn) { // Full connection
if (k_i->linearisation == 0) { // Vecteur -> Vecteur
if (k_i->linearisation == DOESNT_LINEARISE) { // Vecteur -> Vecteur
Kernel_nn* nn = k_i->nn;
Kernel_nn* d_nn = dk_i->nn;
@ -139,7 +139,7 @@ void reset_d_weights(Network* network) {
}
}
} else if (k_i->nn) { // Full connection
if (k_i->linearisation == 0) { // Vecteur -> Vecteur
if (k_i->linearisation == DOESNT_LINEARISE) { // Vecteur -> Vecteur
Kernel_nn* nn = k_i_1->nn;
for (int a=0; a < input_width; a++) {

View File

@ -20,7 +20,7 @@ int main() {
for (int i=0; i < network->size-1; i++) {
kernel = network->kernel[i];
if ((!kernel->cnn)&&(!kernel->nn)) {
if (kernel->pooling == 1) {
if (kernel->pooling == AVG_POOLING) {
printf("\n==== Couche %d de type "YELLOW"Average Pooling"RESET" ====\n", i);
} else {
printf("\n==== Couche %d de type "YELLOW"Max Pooling"RESET" ====\n", i);