mirror of
https://github.com/augustin64/projet-tipe
synced 2025-01-23 15:16:26 +01:00
Ajout de texte et passage de l'anglais au français
This commit is contained in:
parent
0e495903a0
commit
7d1729970a
@ -1,10 +1,13 @@
|
||||
# Explaination of the calculus of the backpropagation for the different layers
|
||||
# Explication des calculs de la backpropagation des différentes couches
|
||||
|
||||
## Backpropagation of the softmax
|
||||
## Backpropagation de la dernière couche avec softmax
|
||||
|
||||
<img src="last_layer.png" width="200">
|
||||
|
||||
Valeur des variables:
|
||||
La couche ($o_1$, $o_2$, $o_3$) contient les valeurs que le réseau devrait donner idéalement.
|
||||
La couche ($l_1$, $l_2$, $l_3$) contient les valeurs que le réseau donne réellement.
|
||||
Soit f la fonction d'activation de la première couche (qui transforme les $a_i$ en $l_i$).
|
||||
Relations entre les différents variables:
|
||||
- $l_1 = \dfrac{e^{a_1}}{e^{a_1}+e^{a_2}+e^{a_3}}$
|
||||
$l_2 = \dfrac{e^{a_2}}{e^{a_1}+e^{a_2}+e^{a_3}}$
|
||||
$l_3 = \dfrac{e^{a_3}}{e^{a_1}+e^{a_2}+e^{a_3}}$
|
||||
@ -26,11 +29,11 @@ $\dfrac{\partial E}{\partial b_i} = \dfrac{\partial E}{\partial a_i}$
|
||||
|
||||
<img src="fully_connected.png" width="200">
|
||||
|
||||
Soit f la fonction d'activation de la première couche et g la fonction d'activation de la deuxième couche.
|
||||
Soit f la fonction d'activation de la première couche (qui transforme les $a_i$ en $l_i$) et g la fonction d'activation de la deuxième couche (qui transforme les $c_i$ en $d_i$).
|
||||
- $d_1 =g(c_1)$
|
||||
$d_2 = g(c2)$
|
||||
$c_1 = w_{11}l_1 + w_{21}l_2 + w_{31}l_3 + b'_1$
|
||||
$c_2 = w_{12}l_1 + w_{22}l_2 + w_{32}l_3 + b'_2$
|
||||
$c_2 = w_{12}l_1 + w_{22}l_2 + w_{32}l_3 + b'_2$
|
||||
$l_1 = f(a_1)$
|
||||
$l_2 = f(a_2)$
|
||||
$l_3 = f(a_3)$
|
||||
@ -39,34 +42,37 @@ $\dfrac{\partial c_2}{\partial l_1} = w_{12}$
|
||||
$\dfrac{\partial c_1}{\partial l_1} = w_{11}$
|
||||
$\dfrac{\partial l_1}{\partial a_1} = f'(a_1)$
|
||||
|
||||
> Derivatives:
|
||||
> Dérivées:
|
||||
$\dfrac{\partial E}{\partial b_j} = \dfrac{\partial E}{\partial l_i} $
|
||||
$\dfrac{\partial E}{\partial w_{ij}} = \dfrac{\partial E}{\partial c_j}l_i$
|
||||
$\dfrac{\partial E}{\partial a_i} = \dfrac{\partial E_{c_1}}{\partial c_1} w_{i1} + \dfrac{\partial E_{c_2}}{\partial c_2} w_{i2}$
|
||||
---
|
||||
---
|
||||
|
||||
## Backpropagation of an average 2d pooling layer
|
||||
## Backpropagation d'une couche d'average 2d pooling layer
|
||||
|
||||
<img src="2d_pooling_layer.png" width="300">
|
||||
<img src="2d_pooling_layer.png" width="300">
|
||||
|
||||
Relation entre les différentes variables:
|
||||
$\forall i,j: \space b_{i j} = \dfrac{a_{2i \space 2j} + a_{2i+1 \space 2j} + a_{2i \space 2j+1} + a_{2i+1 \space 2j+1}}{4}$
|
||||
|
||||
> Derivatives:
|
||||
> Dérivées:
|
||||
$\forall i,j: \space \dfrac{\partial E}{\partial a_{i \space j}} = \dfrac{1}{4} \dfrac{\partial E}{\partial b_{k \space l}} $
|
||||
where $k = \Big\lfloor \dfrac{i}{2} \Big\rfloor$ and $l = \Big\lfloor \dfrac{j}{2} \Big\rfloor$
|
||||
où $k = \Big\lfloor \dfrac{i}{2} \Big\rfloor$ et $l = \Big\lfloor \dfrac{j}{2} \Big\rfloor$
|
||||
---
|
||||
---
|
||||
|
||||
## Backpropagation of a convolutionnal layer
|
||||
## Backpropagation d'une couche convolutive
|
||||
|
||||
<img src="convolution_layer.png" width="300">
|
||||
|
||||
|
||||
Les matrices rouges représente les couches n et n+1.
|
||||
La matrice orange représente .
|
||||
La matrice verte représente les biais de la couche n+1.
|
||||
$\forall i,j: c_{i \space j} = b_{i \space j} + \sum\limits_{0 \leqslant k, l \leqslant 1} \space k_{k \space l} c_{i+k, \space j+l}$
|
||||
$ $
|
||||
|
||||
> Derivatives:
|
||||
> Dérivées:
|
||||
$\dfrac{\partial E}{\partial b_{i,j}} = \dfrac{\partial E}{\partial c_{i, j}}$
|
||||
$\dfrac{\partial E}{\partial k_{i,j}} = \sum\limits_{p=0}^{2} \sum\limits_{l=0}^{2} \Big( \dfrac{\partial E}{\partial c_{k \space l}} a_{i+p, j+l}\Big)$
|
||||
$\dfrac{\partial E}{\partial a_{i,j}} = \sum\limits_{k=max(0, k\_size-1)}^{min(k\_size, dim\_input-j)} \sum\limits_{l=max(0, k\ _size-1)}^{min(k\_size, dim\_input-k)} \dfrac{}{}$
|
||||
|
Loading…
Reference in New Issue
Block a user