Translate backward convolution to CUDA

Not working yet, CUDA kernels in `backpropagation.cu` don't have access to activation functions declared in `function.cu` using `get_activation_function_cuda`.

Temporary workaround: copy `backpropagation.cu` parts that don't work to `function.cu` (all the parts using function pointers in kernels
This commit is contained in:
augustin64 2023-03-30 18:16:41 +02:00
parent 5088c415d6
commit 7511856621
7 changed files with 1138 additions and 26 deletions

View File

@ -101,7 +101,7 @@ $(BUILDDIR)/cnn-main-cuda: $(BUILDDIR)/cnn_main.cuda.o \
$(BUILDDIR)/cnn_free.cuda.o \
$(BUILDDIR)/cnn_jpeg.cuda.o \
$(BUILDDIR)/cnn_cuda_convolution.o \
$(BUILDDIR)/cnn_backpropagation.cuda.o \
$(BUILDDIR)/cnn_cuda_backpropagation.o \
$(BUILDDIR)/colors.cuda.o \
$(BUILDDIR)/cuda_memory_management.o \
$(BUILDDIR)/mnist.cuda.o \

View File

@ -3,8 +3,12 @@
#include <math.h>
#include "include/backpropagation.h"
#include "../include/utils.h"
#include "include/struct.h"
#include "include/config.h"
#ifndef __CUDACC__
int min(int a, int b) {
return a<b?a:b;
}
@ -12,8 +16,38 @@ int min(int a, int b) {
int max(int a, int b) {
return a > b ? a : b;
}
#endif
void softmax_backward_mse(float* input, float* output, int size) {
/*
* Softmax backward MSE
*/
#ifdef __CUDACC__
__global__ void softmax_backward_mse_kernel(float* input, float* output, int size) {
int idx = threadIdx.x + blockDim.x*blockIdx.x;
if (idx >= size) {
return;
}
int input_val = input[idx];
int output_val = output[idx];
input[idx] = (output_val-input_val)*input_val*(1-input_val);
}
void softmax_backward_mse_device(float* input, float* output, int size) {
// Make computation
dim3 gridSize(i_div_up(size, BLOCKSIZE_x));
dim3 blockSize(BLOCKSIZE_x);
softmax_backward_mse_kernel<<<gridSize, blockSize>>>(input, output, size);
gpuErrchk( cudaPeekAtLastError() );
gpuErrchk( cudaDeviceSynchronize() );
}
#endif
void softmax_backward_mse_cpu(float* input, float* output, int size) {
/* Input et output ont la même taille */
for (int i=0; i < size; i++){
@ -21,7 +55,42 @@ void softmax_backward_mse(float* input, float* output, int size) {
}
}
void softmax_backward_cross_entropy(float* input, float* output, int size) {
void softmax_backward_mse(float* input, float* output, int size) {
#ifdef __CUDACC__
softmax_backward_mse_device(input, output, size);
#else
softmax_backward_mse_cpu(input, output, size);
#endif
}
/*
* Softmax backward Cross entropy
*/
#ifdef __CUDACC__
__global__ void softmax_backward_cross_entropy_kernel(float* input, float* output, int size) {
int idx = threadIdx.x + blockDim.x*blockIdx.x;
if (idx >= size) {
return;
}
input[idx] = output[idx] - input[idx];
}
void softmax_backward_cross_entropy_device(float* input, float* output, int size) {
// Make computation
dim3 gridSize(i_div_up(size, BLOCKSIZE_x));
dim3 blockSize(BLOCKSIZE_x);
softmax_backward_cross_entropy_kernel<<<gridSize, blockSize>>>(input, output, size);
gpuErrchk( cudaPeekAtLastError() );
gpuErrchk( cudaDeviceSynchronize() );
}
#endif
void softmax_backward_cross_entropy_cpu(float* input, float* output, int size) {
/* Input et output ont la même taille */
for (int i=0; i < size; i++){
@ -29,16 +98,60 @@ void softmax_backward_cross_entropy(float* input, float* output, int size) {
}
}
void backward_average_pooling(float*** input, float*** output, int input_width, int output_width, int depth) {
void softmax_backward_cross_entropy(float* input, float* output, int size) {
#ifdef __CUDACC__
softmax_backward_cross_entropy_device(input, output, size);
#else
softmax_backward_cross_entropy_cpu(input, output, size);
#endif
}
/*
* Backward average pooling
*/
#ifdef __CUDACC__
__global__ void backward_average_pooling_kernel(float*** input, float*** output, int input_width, int output_width, int depth, int n, int size) {
// Équivalents respectifs de i, j et k dans la boucle effectuée par le cpu
int idx = threadIdx.x + blockDim.x*blockIdx.x; // < depth
int idy = threadIdx.y + blockDim.y*blockIdx.y; // < output_width
int idz = threadIdx.z + blockDim.z*blockIdx.z; // < output_width
if (idx >= depth || idy >= output_width || idz >= output_width) {
return;
}
for (int a=0; a < size; a++) {
for (int b=0; b < size; b++) {
input[idx][size*idy +a][size*idz +b] += output[idx][idy][idz]/n;
}
}
}
void backward_average_pooling_device(float*** input, float*** output, int input_width, int output_width, int depth) {
// Make computation
dim3 gridSize(i_div_up(depth, BLOCKSIZE_x), i_div_up(output_width, BLOCKSIZE_y), i_div_up(output_width, BLOCKSIZE_z));
dim3 blockSize(BLOCKSIZE_x, BLOCKSIZE_y, BLOCKSIZE_z);
int size = input_width/output_width; // Taille du pooling
reset_3d_array(input, depth, input_width, input_width);
backward_average_pooling_kernel<<<gridSize, blockSize>>>(input, output, input_width, output_width, depth, size*size, size);
gpuErrchk( cudaPeekAtLastError() );
gpuErrchk( cudaDeviceSynchronize() );
}
#endif
void backward_average_pooling_cpu(float*** input, float*** output, int input_width, int output_width, int depth) {
/* Input et output ont la même profondeur (depth) */
int size = input_width/output_width; // Taille du pooling
int n = size*size; // Nombre d'éléments dans le pooling
for (int a=0; a < depth; a++)
for (int b=0; b < input_width; b++)
for (int c=0; c < input_width; c++)
input[a][b][c] = 0;
reset_3d_array(input, depth, input_width, input_width);
for (int i=0; i < depth; i++) {
for (int j=0; j < output_width; j++) {
@ -53,7 +166,65 @@ void backward_average_pooling(float*** input, float*** output, int input_width,
}
}
void backward_max_pooling(float*** input, float*** output, int input_width, int output_width, int depth) {
#ifdef __CUDACC__
extern "C"
#endif
void backward_average_pooling(float*** input, float*** output, int input_width, int output_width, int depth) {
#ifndef __CUDACC__
backward_average_pooling_cpu(input, output, input_width, output_width, depth);
#else
backward_average_pooling_device(input, output, input_width, output_width, depth);
#endif
}
/*
* Backward max pooling
*/
#ifdef __CUDACC__
__global__ void backward_max_pooling_kernel(float*** input, float*** output, int input_width, int output_width, int depth, int n, int size) {
// Équivalents respectifs de i, j et k dans la boucle effectuée par le cpu
int idx = threadIdx.x + blockDim.x*blockIdx.x; // < depth
int idy = threadIdx.y + blockDim.y*blockIdx.y; // < output_width
int idz = threadIdx.z + blockDim.z*blockIdx.z; // < output_width
if (idx >= depth || idy >= output_width || idz >= output_width) {
return;
}
float m = -FLT_MAX;
int a_max = -1;
int b_max = -1;
for (int a=0; a < size; a++) {
for (int b=0; b < size; b++) {
if (input[idx][size*idy +a][size*idz +b] > m) {
m = input[idx][size*idy +a][size*idz +b];
a_max = a;
b_max = b;
}
input[idx][size*idy +a][size*idz +b] = 0;
}
}
input[idx][size*idy +a_max][size*idz +b_max] = output[idx][idy][idz]/n;
}
void backward_max_pooling_device(float*** input, float*** output, int input_width, int output_width, int depth) {
// Make computation
dim3 gridSize(i_div_up(depth, BLOCKSIZE_x), i_div_up(output_width, BLOCKSIZE_y), i_div_up(output_width, BLOCKSIZE_z));
dim3 blockSize(BLOCKSIZE_x, BLOCKSIZE_y, BLOCKSIZE_z);
int size = input_width/output_width; // Taille du pooling
backward_max_pooling_kernel<<<gridSize, blockSize>>>(input, output, input_width, output_width, depth, size*size, size);
gpuErrchk( cudaPeekAtLastError() );
gpuErrchk( cudaDeviceSynchronize() );
}
#endif
void backward_max_pooling_cpu(float*** input, float*** output, int input_width, int output_width, int depth) {
int size = input_width/output_width;
float m; // Maximum
@ -82,7 +253,78 @@ void backward_max_pooling(float*** input, float*** output, int input_width, int
}
}
void backward_dense(Kernel_nn* ker, float* input, float* input_z, float* output, int size_input, int size_output, funcPtr d_function, int is_first) {
#ifdef __CUDACC__
extern "C"
#endif
void backward_max_pooling(float*** input, float*** output, int input_width, int output_width, int depth) {
#ifndef __CUDACC__
backward_max_pooling_cpu(input, output, input_width, output_width, depth);
#else
backward_max_pooling_device(input, output, input_width, output_width, depth);
#endif
}
/*
* Backward Dense
*/
#ifdef __CUDACC__
__global__ void backward_dense_kernel_1(Kernel_nn* ker, float* input, float* output, int size_input, int size_output) {
// Équivalents respectifs de i, j et k dans la boucle effectuée par le cpu
int idx = threadIdx.x + blockDim.x*blockIdx.x; // < size_input
int idy = threadIdx.y + blockDim.y*blockIdx.y; // < size_output
if (idx >= size_input || idy >= size_output) {
return;
}
if (idx == 0) {
ker->d_bias[idy] += output[idy];
}
ker->d_weights[idx][idy] += input[idx]*output[idy];
}
__global__ void backward_dense_kernel_2(float** weights, float* input, float* input_z, float* output, int size_input, int size_output, funcPtr d_f) {
int idx = threadIdx.x + blockDim.x*blockIdx.x; // < size_input
if (idx >= size_input) {
return;
}
float tmp=0;
for (int j=0; j < size_output; j++) {
tmp += output[j]*weights[idx][j];
}
input[idx] = tmp*( (*d_f)(input_z[idx]) );
}
void backward_dense_device(Kernel_nn* ker, float* input, float* input_z, float* output, int size_input, int size_output, int activation, int is_first) {
// Make computation
dim3 gridSize1(i_div_up(size_input, BLOCKSIZE_x), i_div_up(size_output, BLOCKSIZE_y));
dim3 blockSize1(BLOCKSIZE_x, BLOCKSIZE_y);
backward_dense_kernel_1<<<gridSize1, blockSize1>>>(ker, input, output, size_input, size_output);
gpuErrchk( cudaPeekAtLastError() );
gpuErrchk( cudaDeviceSynchronize() );
// Second kernel
if (is_first != 1) {
dim3 gridSize1(i_div_up(size_input, BLOCKSIZE_x));
dim3 blockSize1(BLOCKSIZE_x);
funcPtr d_function = get_activation_function_cuda(activation);
backward_dense_kernel_2<<<gridSize1, blockSize1>>>(ker->weights, input, input_z, output, size_input, size_output, d_function);
gpuErrchk( cudaPeekAtLastError() );
gpuErrchk( cudaDeviceSynchronize() );
}
}
#endif
void backward_dense_cpu(Kernel_nn* ker, float* input, float* input_z, float* output, int size_input, int size_output, int activation, int is_first) {
funcPtr d_function = get_activation_function(activation);
// Bias
for (int j=0; j < size_output; j++) {
ker->d_bias[j] += output[j];
@ -109,7 +351,85 @@ void backward_dense(Kernel_nn* ker, float* input, float* input_z, float* output,
}
}
void backward_linearisation(Kernel_nn* ker, float*** input, float*** input_z, float* output, int depth_input, int dim_input, int size_output,funcPtr d_function) {
#ifdef __CUDACC__
extern "C"
#endif
void backward_dense(Kernel_nn* ker, float* input, float* input_z, float* output, int size_input, int size_output, int activation, int is_first) {
#ifndef __CUDACC__
backward_dense_cpu(ker, input, input_z, output, size_input, size_output, activation, is_first);
#else
backward_dense_device(ker, input, input_z, output, size_input, size_output, activation, is_first);
#endif
}
/*
* Backward linearisation
*/
#ifdef __CUDACC__
__global__ void backward_linearisation_kernel_1(Kernel_nn* ker, float*** input, float* output, int depth_input, int dim_input, int size_output) {
int idx = threadIdx.x + blockDim.x*blockIdx.x; // < depth_input
int idy = threadIdx.y + blockDim.y*blockIdx.y; // < dim_input
int idz = threadIdx.z + blockDim.z*blockIdx.z; // < dim_input
if (idx >= depth_input || idy >= dim_input || idz >= dim_input) {
return;
}
int id = idx*dim_input*dim_input + idy*dim_input + idz;
for (int j=0; j < size_output; j++) {
ker->d_weights[id][j] += input[idx][idy][idz]*output[j];
}
if (id == 0) {
for (int j=0; j < size_output; j++) {
ker->d_bias[j] += output[j];
}
}
}
__global__ void backward_linearisation_kernel_2(Kernel_nn* ker, float*** input, float*** input_z, float* output, int depth_input, int dim_input, int size_output, funcPtr d_f) {
int idx = threadIdx.x + blockDim.x*blockIdx.x; // < depth_input
int idy = threadIdx.y + blockDim.y*blockIdx.y; // < dim_input
int idz = threadIdx.z + blockDim.z*blockIdx.z; // < dim_input
if (idx >= depth_input || idy >= dim_input || idz >= dim_input) {
return;
}
int id = idx*dim_input*dim_input + idy*dim_input + idz;
float tmp=0;
for (int j=0; j < size_output; j++) {
tmp += output[j]*ker->weights[id][j];
}
input[idx][idy][idz] = tmp*( (*d_f)(input_z[idx][idy][idz]) );
}
void backward_linearisation_device(Kernel_nn* ker, float*** input, float*** input_z, float* output, int depth_input, int dim_input, int size_output, int activation) {
// Make computation
dim3 gridSize(i_div_up(depth_input, BLOCKSIZE_x), i_div_up(dim_input, BLOCKSIZE_y), i_div_up(dim_input, BLOCKSIZE_y));
dim3 blockSize(BLOCKSIZE_x, BLOCKSIZE_y, BLOCKSIZE_z);
backward_linearisation_kernel_1<<<gridSize, blockSize>>>(ker, input, output, depth_input, dim_input, size_output);
gpuErrchk( cudaPeekAtLastError() );
gpuErrchk( cudaDeviceSynchronize() );
// Second kernel
funcPtr d_function = get_activation_function_cuda(activation);
backward_linearisation_kernel_2<<<gridSize, blockSize>>>(ker, input, input_z, output, depth_input, dim_input, size_output, d_function);
gpuErrchk( cudaPeekAtLastError() );
gpuErrchk( cudaDeviceSynchronize() );
}
#endif
void backward_linearisation_cpu(Kernel_nn* ker, float*** input, float*** input_z, float* output, int depth_input, int dim_input, int size_output, int activation) {
funcPtr d_function = get_activation_function(activation);
// Bias
for (int j=0; j < size_output; j++) {
ker->d_bias[j] += output[j];
@ -144,7 +464,119 @@ void backward_linearisation(Kernel_nn* ker, float*** input, float*** input_z, fl
}
}
void backward_convolution(Kernel_cnn* ker, float*** input, float*** input_z, float*** output, int depth_input, int dim_input, int depth_output, int dim_output, funcPtr d_function, int is_first) {
#ifdef __CUDACC__
extern "C"
#endif
void backward_linearisation(Kernel_nn* ker, float*** input, float*** input_z, float* output, int depth_input, int dim_input, int size_output, int activation) {
#ifndef __CUDACC__
backward_linearisation_cpu(ker, input, input_z, output, depth_input, dim_input, size_output, activation);
#else
backward_linearisation_device(ker, input, input_z, output, depth_input, dim_input, size_output, activation);
#endif
}
/*
* Backward convolution
*/
#ifdef __CUDACC__
__global__ void backward_convolution_dbias_kernel(Kernel_cnn* ker, float*** output, int depth_output, int dim_output) {
int idx = threadIdx.x + blockDim.x*blockIdx.x;
int idy = threadIdx.y + blockDim.y*blockIdx.y;
int idz = threadIdx.z + blockDim.z*blockIdx.z;
if (idx >= depth_output || idy >= dim_output || idz >= dim_output) {
return;
}
ker->d_bias[idx][idy][idz] += output[idx][idy][idz];
}
__global__ void backward_convolution_dweight_kernel(Kernel_cnn* ker, float*** input, float*** output, int depth_input, int depth_output, int dim_output, int k_size) {
int idx = threadIdx.x + blockDim.x*blockIdx.x;
int idy = threadIdx.y + blockDim.y*blockIdx.y;
int idz = threadIdx.z + blockDim.z*blockIdx.z;
int idz1 = idz / k_size;
int idz2 = idz % k_size;
if (idx >= depth_input || idy >= depth_output || idz1 >= k_size || idz2 >= k_size) {
return;
}
float tmp = 0;
for (int l=0; l < dim_output; l++) {
for (int m=0; m < dim_output; m++) {
tmp += input[idx][l+idz1][m+idz2]*output[idy][l][m];
}
}
ker->d_weights[idx][idy][idz1][idz2] += tmp;
}
__global__ void backward_convolution_propagate_kernel(Kernel_cnn* ker, float*** input, float*** input_z, float*** output, int depth_input, int dim_input, int depth_output, int k_size, funcPtr d_f) {
int idx = threadIdx.x + blockDim.x*blockIdx.x;
int idy = threadIdx.y + blockDim.y*blockIdx.y;
int idz = threadIdx.z + blockDim.z*blockIdx.z;
if (idx >= depth_input || idy >= dim_input || idz >= dim_input) {
return;
}
int min_m, max_m, min_n, max_n;
float tmp = 0;
for (int l=0; l < depth_output; l++) {
min_m = max(0, k_size-1-idy);
max_m = min(k_size, dim_input - idy);
min_n = max(0, k_size-1-idz);
max_n = min(k_size, dim_input-idz);
for (int m=min_m; m < max_m; m++) {
for (int n=min_n; n < max_n; n++) {
tmp += output[l][idy-k_size+m+1][idz-k_size+n+1]*ker->weights[idx][l][m][n];
}
}
}
input[idx][idy][idz] = tmp*( (*d_f)(input_z[idx][idy][idz]) );
}
void backward_convolution_device(Kernel_cnn* ker, float*** input, float*** input_z, float*** output, int depth_input, int dim_input, int depth_output, int dim_output, int activation, int is_first) {
// Bias Kernel
dim3 gridSize1(i_div_up(depth_output, BLOCKSIZE_x), i_div_up(dim_output, BLOCKSIZE_y), i_div_up(dim_output, BLOCKSIZE_y));
dim3 blockSize1(BLOCKSIZE_x, BLOCKSIZE_y, BLOCKSIZE_z);
backward_convolution_dbias_kernel<<<gridSize1, blockSize1>>>(ker, output, depth_output, dim_output);
gpuErrchk( cudaPeekAtLastError() );
gpuErrchk( cudaDeviceSynchronize() );
// Weights Kernel
int k_size = dim_input - dim_output +1;
dim3 gridSize2(i_div_up(depth_input, BLOCKSIZE_x), i_div_up(depth_output, BLOCKSIZE_y), i_div_up(k_size*k_size, BLOCKSIZE_y));
dim3 blockSize2(BLOCKSIZE_x, BLOCKSIZE_y, BLOCKSIZE_z);
backward_convolution_dweight_kernel<<<gridSize2, blockSize2>>>(ker, input, output, depth_input, depth_output, dim_output, k_size);
gpuErrchk( cudaPeekAtLastError() );
gpuErrchk( cudaDeviceSynchronize() );
// input propagation Kernel
if (is_first != 1) {
dim3 gridSize3(i_div_up(depth_input, BLOCKSIZE_x), i_div_up(dim_input, BLOCKSIZE_y), i_div_up(dim_input, BLOCKSIZE_y));
dim3 blockSize3(BLOCKSIZE_x, BLOCKSIZE_y, BLOCKSIZE_z);
funcPtr d_function = get_activation_function_cuda(activation);
backward_convolution_propagate_kernel<<<gridSize3, blockSize3>>>(ker, input, input_z, output, depth_input, dim_input, depth_output, k_size, d_function);
gpuErrchk( cudaPeekAtLastError() );
gpuErrchk( cudaDeviceSynchronize() );
}
}
#endif
void backward_convolution_cpu(Kernel_cnn* ker, float*** input, float*** input_z, float*** output, int depth_input, int dim_input, int depth_output, int dim_output, int activation, int is_first) {
funcPtr d_function = get_activation_function(activation);
// Bias
for (int i=0; i < depth_output; i++) {
for (int j=0; j < dim_output; j++) {
@ -197,3 +629,14 @@ void backward_convolution(Kernel_cnn* ker, float*** input, float*** input_z, flo
}
}
}
#ifdef __CUDACC__
extern "C"
#endif
void backward_convolution(Kernel_cnn* ker, float*** input, float*** input_z, float*** output, int depth_input, int dim_input, int depth_output, int dim_output, int activation, int is_first) {
#ifndef __CUDACC__
backward_convolution_cpu(ker, input, input_z, output, depth_input, dim_input, depth_output, dim_output, activation, is_first);
#else
backward_convolution_device(ker, input, input_z, output, depth_input, dim_input, depth_output, dim_output, activation, is_first);
#endif
}

642
src/cnn/backpropagation.cu Normal file
View File

@ -0,0 +1,642 @@
#include <stdio.h>
#include <float.h>
#include <math.h>
#include "include/backpropagation.h"
#include "../include/utils.h"
#include "include/struct.h"
#include "include/config.h"
#ifndef __CUDACC__
int min(int a, int b) {
return a<b?a:b;
}
int max(int a, int b) {
return a > b ? a : b;
}
#endif
/*
* Softmax backward MSE
*/
#ifdef __CUDACC__
__global__ void softmax_backward_mse_kernel(float* input, float* output, int size) {
int idx = threadIdx.x + blockDim.x*blockIdx.x;
if (idx >= size) {
return;
}
int input_val = input[idx];
int output_val = output[idx];
input[idx] = (output_val-input_val)*input_val*(1-input_val);
}
void softmax_backward_mse_device(float* input, float* output, int size) {
// Make computation
dim3 gridSize(i_div_up(size, BLOCKSIZE_x));
dim3 blockSize(BLOCKSIZE_x);
softmax_backward_mse_kernel<<<gridSize, blockSize>>>(input, output, size);
gpuErrchk( cudaPeekAtLastError() );
gpuErrchk( cudaDeviceSynchronize() );
}
#endif
void softmax_backward_mse_cpu(float* input, float* output, int size) {
/* Input et output ont la même taille */
for (int i=0; i < size; i++){
input[i] = (output[i]-input[i])*input[i]*(1-input[i]);
}
}
void softmax_backward_mse(float* input, float* output, int size) {
#ifdef __CUDACC__
softmax_backward_mse_device(input, output, size);
#else
softmax_backward_mse_cpu(input, output, size);
#endif
}
/*
* Softmax backward Cross entropy
*/
#ifdef __CUDACC__
__global__ void softmax_backward_cross_entropy_kernel(float* input, float* output, int size) {
int idx = threadIdx.x + blockDim.x*blockIdx.x;
if (idx >= size) {
return;
}
input[idx] = output[idx] - input[idx];
}
void softmax_backward_cross_entropy_device(float* input, float* output, int size) {
// Make computation
dim3 gridSize(i_div_up(size, BLOCKSIZE_x));
dim3 blockSize(BLOCKSIZE_x);
softmax_backward_cross_entropy_kernel<<<gridSize, blockSize>>>(input, output, size);
gpuErrchk( cudaPeekAtLastError() );
gpuErrchk( cudaDeviceSynchronize() );
}
#endif
void softmax_backward_cross_entropy_cpu(float* input, float* output, int size) {
/* Input et output ont la même taille */
for (int i=0; i < size; i++){
input[i] = output[i] - input[i];
}
}
void softmax_backward_cross_entropy(float* input, float* output, int size) {
#ifdef __CUDACC__
softmax_backward_cross_entropy_device(input, output, size);
#else
softmax_backward_cross_entropy_cpu(input, output, size);
#endif
}
/*
* Backward average pooling
*/
#ifdef __CUDACC__
__global__ void backward_average_pooling_kernel(float*** input, float*** output, int input_width, int output_width, int depth, int n, int size) {
// Équivalents respectifs de i, j et k dans la boucle effectuée par le cpu
int idx = threadIdx.x + blockDim.x*blockIdx.x; // < depth
int idy = threadIdx.y + blockDim.y*blockIdx.y; // < output_width
int idz = threadIdx.z + blockDim.z*blockIdx.z; // < output_width
if (idx >= depth || idy >= output_width || idz >= output_width) {
return;
}
for (int a=0; a < size; a++) {
for (int b=0; b < size; b++) {
input[idx][size*idy +a][size*idz +b] += output[idx][idy][idz]/n;
}
}
}
void backward_average_pooling_device(float*** input, float*** output, int input_width, int output_width, int depth) {
// Make computation
dim3 gridSize(i_div_up(depth, BLOCKSIZE_x), i_div_up(output_width, BLOCKSIZE_y), i_div_up(output_width, BLOCKSIZE_z));
dim3 blockSize(BLOCKSIZE_x, BLOCKSIZE_y, BLOCKSIZE_z);
int size = input_width/output_width; // Taille du pooling
reset_3d_array(input, depth, input_width, input_width);
backward_average_pooling_kernel<<<gridSize, blockSize>>>(input, output, input_width, output_width, depth, size*size, size);
gpuErrchk( cudaPeekAtLastError() );
gpuErrchk( cudaDeviceSynchronize() );
}
#endif
void backward_average_pooling_cpu(float*** input, float*** output, int input_width, int output_width, int depth) {
/* Input et output ont la même profondeur (depth) */
int size = input_width/output_width; // Taille du pooling
int n = size*size; // Nombre d'éléments dans le pooling
reset_3d_array(input, depth, input_width, input_width);
for (int i=0; i < depth; i++) {
for (int j=0; j < output_width; j++) {
for (int k=0; k < output_width; k++) {
for (int a=0; a < size; a++) {
for (int b=0; b < size; b++) {
input[i][size*j +a][size*k +b] += output[i][j][k]/n;
}
}
}
}
}
}
#ifdef __CUDACC__
extern "C"
#endif
void backward_average_pooling(float*** input, float*** output, int input_width, int output_width, int depth) {
#ifndef __CUDACC__
backward_average_pooling_cpu(input, output, input_width, output_width, depth);
#else
backward_average_pooling_device(input, output, input_width, output_width, depth);
#endif
}
/*
* Backward max pooling
*/
#ifdef __CUDACC__
__global__ void backward_max_pooling_kernel(float*** input, float*** output, int input_width, int output_width, int depth, int n, int size) {
// Équivalents respectifs de i, j et k dans la boucle effectuée par le cpu
int idx = threadIdx.x + blockDim.x*blockIdx.x; // < depth
int idy = threadIdx.y + blockDim.y*blockIdx.y; // < output_width
int idz = threadIdx.z + blockDim.z*blockIdx.z; // < output_width
if (idx >= depth || idy >= output_width || idz >= output_width) {
return;
}
float m = -FLT_MAX;
int a_max = -1;
int b_max = -1;
for (int a=0; a < size; a++) {
for (int b=0; b < size; b++) {
if (input[idx][size*idy +a][size*idz +b] > m) {
m = input[idx][size*idy +a][size*idz +b];
a_max = a;
b_max = b;
}
input[idx][size*idy +a][size*idz +b] = 0;
}
}
input[idx][size*idy +a_max][size*idz +b_max] = output[idx][idy][idz]/n;
}
void backward_max_pooling_device(float*** input, float*** output, int input_width, int output_width, int depth) {
// Make computation
dim3 gridSize(i_div_up(depth, BLOCKSIZE_x), i_div_up(output_width, BLOCKSIZE_y), i_div_up(output_width, BLOCKSIZE_z));
dim3 blockSize(BLOCKSIZE_x, BLOCKSIZE_y, BLOCKSIZE_z);
int size = input_width/output_width; // Taille du pooling
backward_max_pooling_kernel<<<gridSize, blockSize>>>(input, output, input_width, output_width, depth, size*size, size);
gpuErrchk( cudaPeekAtLastError() );
gpuErrchk( cudaDeviceSynchronize() );
}
#endif
void backward_max_pooling_cpu(float*** input, float*** output, int input_width, int output_width, int depth) {
int size = input_width/output_width;
float m; // Maximum
int a_max, b_max; // Indices du maximum
for (int i=0; i < depth; i++) {
for (int j=0; j < output_width; j++) {
for (int k=0; k < output_width; k++) {
m = -FLT_MAX;
a_max = -1;
b_max = -1;
for (int a=0; a < size; a++) {
for (int b=0; b < size; b++) {
if (input[i][size*j +a][size*k +b] > m) {
m = input[i][size*j +a][size*k +b];
a_max = a;
b_max = b;
}
input[i][size*j +a][size*k +b] = 0;
}
}
input[i][size*j +a_max][size*k +b_max] = output[i][j][k]/(size*size);
}
}
}
}
#ifdef __CUDACC__
extern "C"
#endif
void backward_max_pooling(float*** input, float*** output, int input_width, int output_width, int depth) {
#ifndef __CUDACC__
backward_max_pooling_cpu(input, output, input_width, output_width, depth);
#else
backward_max_pooling_device(input, output, input_width, output_width, depth);
#endif
}
/*
* Backward Dense
*/
#ifdef __CUDACC__
__global__ void backward_dense_kernel_1(Kernel_nn* ker, float* input, float* output, int size_input, int size_output) {
// Équivalents respectifs de i, j et k dans la boucle effectuée par le cpu
int idx = threadIdx.x + blockDim.x*blockIdx.x; // < size_input
int idy = threadIdx.y + blockDim.y*blockIdx.y; // < size_output
if (idx >= size_input || idy >= size_output) {
return;
}
if (idx == 0) {
ker->d_bias[idy] += output[idy];
}
ker->d_weights[idx][idy] += input[idx]*output[idy];
}
__global__ void backward_dense_kernel_2(float** weights, float* input, float* input_z, float* output, int size_input, int size_output, funcPtr d_f) {
int idx = threadIdx.x + blockDim.x*blockIdx.x; // < size_input
if (idx >= size_input) {
return;
}
float tmp=0;
for (int j=0; j < size_output; j++) {
tmp += output[j]*weights[idx][j];
}
input[idx] = tmp*( (*d_f)(input_z[idx]) );
}
void backward_dense_device(Kernel_nn* ker, float* input, float* input_z, float* output, int size_input, int size_output, int activation, int is_first) {
// Make computation
dim3 gridSize1(i_div_up(size_input, BLOCKSIZE_x), i_div_up(size_output, BLOCKSIZE_y));
dim3 blockSize1(BLOCKSIZE_x, BLOCKSIZE_y);
backward_dense_kernel_1<<<gridSize1, blockSize1>>>(ker, input, output, size_input, size_output);
gpuErrchk( cudaPeekAtLastError() );
gpuErrchk( cudaDeviceSynchronize() );
// Second kernel
if (is_first != 1) {
dim3 gridSize1(i_div_up(size_input, BLOCKSIZE_x));
dim3 blockSize1(BLOCKSIZE_x);
funcPtr d_function = get_activation_function_cuda(activation);
backward_dense_kernel_2<<<gridSize1, blockSize1>>>(ker->weights, input, input_z, output, size_input, size_output, d_function);
gpuErrchk( cudaPeekAtLastError() );
gpuErrchk( cudaDeviceSynchronize() );
}
}
#endif
void backward_dense_cpu(Kernel_nn* ker, float* input, float* input_z, float* output, int size_input, int size_output, int activation, int is_first) {
funcPtr d_function = get_activation_function(activation);
// Bias
for (int j=0; j < size_output; j++) {
ker->d_bias[j] += output[j];
}
// Weights
for (int i=0; i < size_input; i++) {
for (int j=0; j < size_output; j++) {
ker->d_weights[i][j] += input[i]*output[j];
}
}
// Input
if (is_first==1) {// Pas besoin de backpropager dans l'input
return;
}
for (int i=0; i < size_input; i++) {
float tmp=0;
for (int j=0; j < size_output; j++) {
tmp += output[j]*ker->weights[i][j];
}
input[i] = tmp*d_function(input_z[i]);
}
}
#ifdef __CUDACC__
extern "C"
#endif
void backward_dense(Kernel_nn* ker, float* input, float* input_z, float* output, int size_input, int size_output, int activation, int is_first) {
#ifndef __CUDACC__
backward_dense_cpu(ker, input, input_z, output, size_input, size_output, activation, is_first);
#else
backward_dense_device(ker, input, input_z, output, size_input, size_output, activation, is_first);
#endif
}
/*
* Backward linearisation
*/
#ifdef __CUDACC__
__global__ void backward_linearisation_kernel_1(Kernel_nn* ker, float*** input, float* output, int depth_input, int dim_input, int size_output) {
int idx = threadIdx.x + blockDim.x*blockIdx.x; // < depth_input
int idy = threadIdx.y + blockDim.y*blockIdx.y; // < dim_input
int idz = threadIdx.z + blockDim.z*blockIdx.z; // < dim_input
if (idx >= depth_input || idy >= dim_input || idz >= dim_input) {
return;
}
int id = idx*dim_input*dim_input + idy*dim_input + idz;
for (int j=0; j < size_output; j++) {
ker->d_weights[id][j] += input[idx][idy][idz]*output[j];
}
if (id == 0) {
for (int j=0; j < size_output; j++) {
ker->d_bias[j] += output[j];
}
}
}
__global__ void backward_linearisation_kernel_2(Kernel_nn* ker, float*** input, float*** input_z, float* output, int depth_input, int dim_input, int size_output, funcPtr d_f) {
int idx = threadIdx.x + blockDim.x*blockIdx.x; // < depth_input
int idy = threadIdx.y + blockDim.y*blockIdx.y; // < dim_input
int idz = threadIdx.z + blockDim.z*blockIdx.z; // < dim_input
if (idx >= depth_input || idy >= dim_input || idz >= dim_input) {
return;
}
int id = idx*dim_input*dim_input + idy*dim_input + idz;
float tmp=0;
for (int j=0; j < size_output; j++) {
tmp += output[j]*ker->weights[id][j];
}
input[idx][idy][idz] = tmp*( (*d_f)(input_z[idx][idy][idz]) );
}
void backward_linearisation_device(Kernel_nn* ker, float*** input, float*** input_z, float* output, int depth_input, int dim_input, int size_output, int activation) {
// Make computation
dim3 gridSize(i_div_up(depth_input, BLOCKSIZE_x), i_div_up(dim_input, BLOCKSIZE_y), i_div_up(dim_input, BLOCKSIZE_y));
dim3 blockSize(BLOCKSIZE_x, BLOCKSIZE_y, BLOCKSIZE_z);
backward_linearisation_kernel_1<<<gridSize, blockSize>>>(ker, input, output, depth_input, dim_input, size_output);
gpuErrchk( cudaPeekAtLastError() );
gpuErrchk( cudaDeviceSynchronize() );
// Second kernel
funcPtr d_function = get_activation_function_cuda(activation);
backward_linearisation_kernel_2<<<gridSize, blockSize>>>(ker, input, input_z, output, depth_input, dim_input, size_output, d_function);
gpuErrchk( cudaPeekAtLastError() );
gpuErrchk( cudaDeviceSynchronize() );
}
#endif
void backward_linearisation_cpu(Kernel_nn* ker, float*** input, float*** input_z, float* output, int depth_input, int dim_input, int size_output, int activation) {
funcPtr d_function = get_activation_function(activation);
// Bias
for (int j=0; j < size_output; j++) {
ker->d_bias[j] += output[j];
}
// Weights
int cpt = 0;
for (int i=0; i < depth_input; i++) {
for (int k=0; k < dim_input; k++) {
for (int l=0; l < dim_input; l++) {
for (int j=0; j < size_output; j++) {
ker->d_weights[cpt][j] += input[i][k][l]*output[j];
}
cpt++;
}
}
}
// Input
cpt = 0;
for (int i=0; i < depth_input; i++) {
for (int k=0; k < dim_input; k++) {
for (int l=0; l < dim_input; l++) {
float tmp=0;
for (int j=0; j < size_output; j++) {
tmp += output[j]*ker->weights[cpt][j];
}
input[i][k][l] = tmp*d_function(input_z[i][k][l]);
cpt++;
}
}
}
}
#ifdef __CUDACC__
extern "C"
#endif
void backward_linearisation(Kernel_nn* ker, float*** input, float*** input_z, float* output, int depth_input, int dim_input, int size_output, int activation) {
#ifndef __CUDACC__
backward_linearisation_cpu(ker, input, input_z, output, depth_input, dim_input, size_output, activation);
#else
backward_linearisation_device(ker, input, input_z, output, depth_input, dim_input, size_output, activation);
#endif
}
/*
* Backward convolution
*/
#ifdef __CUDACC__
__global__ void backward_convolution_dbias_kernel(Kernel_cnn* ker, float*** output, int depth_output, int dim_output) {
int idx = threadIdx.x + blockDim.x*blockIdx.x;
int idy = threadIdx.y + blockDim.y*blockIdx.y;
int idz = threadIdx.z + blockDim.z*blockIdx.z;
if (idx >= depth_output || idy >= dim_output || idz >= dim_output) {
return;
}
ker->d_bias[idx][idy][idz] += output[idx][idy][idz];
}
__global__ void backward_convolution_dweight_kernel(Kernel_cnn* ker, float*** input, float*** output, int depth_input, int depth_output, int dim_output, int k_size) {
int idx = threadIdx.x + blockDim.x*blockIdx.x;
int idy = threadIdx.y + blockDim.y*blockIdx.y;
int idz = threadIdx.z + blockDim.z*blockIdx.z;
int idz1 = idz / k_size;
int idz2 = idz % k_size;
if (idx >= depth_input || idy >= depth_output || idz1 >= k_size || idz2 >= k_size) {
return;
}
float tmp = 0;
for (int l=0; l < dim_output; l++) {
for (int m=0; m < dim_output; m++) {
tmp += input[idx][l+idz1][m+idz2]*output[idy][l][m];
}
}
ker->d_weights[idx][idy][idz1][idz2] += tmp;
}
__global__ void backward_convolution_propagate_kernel(Kernel_cnn* ker, float*** input, float*** input_z, float*** output, int depth_input, int dim_input, int depth_output, int k_size, funcPtr d_f) {
int idx = threadIdx.x + blockDim.x*blockIdx.x;
int idy = threadIdx.y + blockDim.y*blockIdx.y;
int idz = threadIdx.z + blockDim.z*blockIdx.z;
if (idx >= depth_input || idy >= dim_input || idz >= dim_input) {
return;
}
int min_m, max_m, min_n, max_n;
float tmp = 0;
for (int l=0; l < depth_output; l++) {
min_m = max(0, k_size-1-idy);
max_m = min(k_size, dim_input - idy);
min_n = max(0, k_size-1-idz);
max_n = min(k_size, dim_input-idz);
for (int m=min_m; m < max_m; m++) {
for (int n=min_n; n < max_n; n++) {
tmp += output[l][idy-k_size+m+1][idz-k_size+n+1]*ker->weights[idx][l][m][n];
}
}
}
input[idx][idy][idz] = tmp*( (*d_f)(input_z[idx][idy][idz]) );
}
void backward_convolution_device(Kernel_cnn* ker, float*** input, float*** input_z, float*** output, int depth_input, int dim_input, int depth_output, int dim_output, int activation, int is_first) {
// Bias Kernel
dim3 gridSize1(i_div_up(depth_output, BLOCKSIZE_x), i_div_up(dim_output, BLOCKSIZE_y), i_div_up(dim_output, BLOCKSIZE_y));
dim3 blockSize1(BLOCKSIZE_x, BLOCKSIZE_y, BLOCKSIZE_z);
backward_convolution_dbias_kernel<<<gridSize1, blockSize1>>>(ker, output, depth_output, dim_output);
gpuErrchk( cudaPeekAtLastError() );
gpuErrchk( cudaDeviceSynchronize() );
// Weights Kernel
int k_size = dim_input - dim_output +1;
dim3 gridSize2(i_div_up(depth_input, BLOCKSIZE_x), i_div_up(depth_output, BLOCKSIZE_y), i_div_up(k_size*k_size, BLOCKSIZE_y));
dim3 blockSize2(BLOCKSIZE_x, BLOCKSIZE_y, BLOCKSIZE_z);
backward_convolution_dweight_kernel<<<gridSize2, blockSize2>>>(ker, input, output, depth_input, depth_output, dim_output, k_size);
gpuErrchk( cudaPeekAtLastError() );
gpuErrchk( cudaDeviceSynchronize() );
// input propagation Kernel
if (is_first != 1) {
dim3 gridSize3(i_div_up(depth_input, BLOCKSIZE_x), i_div_up(dim_input, BLOCKSIZE_y), i_div_up(dim_input, BLOCKSIZE_y));
dim3 blockSize3(BLOCKSIZE_x, BLOCKSIZE_y, BLOCKSIZE_z);
funcPtr d_function = get_activation_function_cuda(activation);
backward_convolution_propagate_kernel<<<gridSize3, blockSize3>>>(ker, input, input_z, output, depth_input, dim_input, depth_output, k_size, d_function);
gpuErrchk( cudaPeekAtLastError() );
gpuErrchk( cudaDeviceSynchronize() );
}
}
#endif
void backward_convolution_cpu(Kernel_cnn* ker, float*** input, float*** input_z, float*** output, int depth_input, int dim_input, int depth_output, int dim_output, int activation, int is_first) {
funcPtr d_function = get_activation_function(activation);
// Bias
for (int i=0; i < depth_output; i++) {
for (int j=0; j < dim_output; j++) {
for (int k=0; k < dim_output; k++) {
ker->d_bias[i][j][k] += output[i][j][k];
}
}
}
// Weights
int k_size = dim_input - dim_output +1;
for (int h=0; h < depth_input; h++) {
for (int i=0; i < depth_output; i++) {
for (int j=0; j < k_size; j++) {
for (int k=0; k < k_size; k++) {
float tmp = 0;
for (int l=0; l < dim_output; l++) {
for (int m=0; m < dim_output; m++) {
tmp += input[h][l+j][m+k]*output[i][l][m];
}
}
ker->d_weights[h][i][j][k] += tmp;
}
}
}
}
// Input
if (is_first==1) // Pas besoin de backpropager dans l'input
return;
int min_m, max_m, min_n, max_n;
for (int i=0; i < depth_input; i++) {
for (int j=0; j < dim_input; j++) {
for (int k=0; k < dim_input; k++) {
float tmp = 0;
for (int l=0; l < depth_output; l++) {
min_m = max(0, k_size-1-j);
max_m = min(k_size, dim_input - j);
min_n = max(0, k_size-1-k);
max_n = min(k_size, dim_input-k);
for (int m=min_m; m < max_m; m++) {
for (int n=min_n; n < max_n; n++) {
tmp += output[l][j-k_size+m+1][k-k_size+n+1]*ker->weights[i][l][m][n];
}
}
}
input[i][j][k] = tmp*d_function(input_z[i][j][k]);
}
}
}
}
#ifdef __CUDACC__
extern "C"
#endif
void backward_convolution(Kernel_cnn* ker, float*** input, float*** input_z, float*** output, int depth_input, int dim_input, int depth_output, int dim_output, int activation, int is_first) {
#ifndef __CUDACC__
backward_convolution_cpu(ker, input, input_z, output, depth_input, dim_input, depth_output, dim_output, activation, is_first);
#else
backward_convolution_device(ker, input, input_z, output, depth_input, dim_input, depth_output, dim_output, activation, is_first);
#endif
}

View File

@ -4,6 +4,7 @@
#include <float.h> // Is it used ?
#include <math.h>
#include "../include/memory_management.h"
#include "include/backpropagation.h"
#include "include/initialisation.h"
#include "include/function.h"
@ -226,7 +227,7 @@ void backward_propagation(Network* network, int wanted_number) {
// Backward sur la dernière couche qui utilise toujours SOFTMAX
float* wanted_output = generate_wanted_output(wanted_number, network->width[network->size -1]); // Sortie désirée, permet d'initialiser une erreur
softmax_backward_cross_entropy(network->input[n-1][0][0], wanted_output, network->width[n-1]);
free(wanted_output);
gree(wanted_output);
/*
* On propage à chaque étape:
@ -252,14 +253,12 @@ void backward_propagation(Network* network, int wanted_number) {
if (k_i->cnn) { // Convolution
funcPtr d_f = get_activation_function(-activation);
backward_convolution(k_i->cnn, input, input_z, output, input_depth, input_width, output_depth, output_width, d_f, i==0);
backward_convolution(k_i->cnn, input, input_z, output, input_depth, input_width, output_depth, output_width, -activation, i==0);
} else if (k_i->nn) { // Full connection
funcPtr d_f = get_activation_function(-activation);
if (k_i->linearisation == DOESNT_LINEARISE) { // Vecteur -> Vecteur
backward_dense(k_i->nn, input[0][0], input_z[0][0], output[0][0], input_width, output_width, d_f, i==0);
backward_dense(k_i->nn, input[0][0], input_z[0][0], output[0][0], input_width, output_width, -activation, i==0);
} else { // Matrice -> vecteur
backward_linearisation(k_i->nn, input, input_z, output[0][0], input_depth, input_width, output_width, d_f);
backward_linearisation(k_i->nn, input, input_z, output[0][0], input_depth, input_width, output_width, -activation);
}
} else { // Pooling
if (k_i->pooling == AVG_POOLING) {
@ -313,7 +312,7 @@ float compute_cross_entropy_loss(float* output, float* wanted_output, int len) {
}
float* generate_wanted_output(int wanted_number, int size_output) {
float* wanted_output = (float*)malloc(sizeof(float)*size_output);
float* wanted_output = (float*)nalloc(size_output, sizeof(float));
for (int i=0; i < size_output; i++) {
if (i==wanted_number) {
wanted_output[i]=1;

View File

@ -14,42 +14,70 @@ int min(int a, int b);
*/
int max(int a, int b);
#ifdef __CUDACC__
extern "C"
#endif
/*
* Transfert les informations d'erreur de la sortie voulue à la sortie réelle
*/
void softmax_backward_mse(float* input, float* output, int size);
#ifdef __CUDACC__
extern "C"
#endif
/*
* Transfert les informations d'erreur de la sortie voulue à la sortie réelle
* en considérant MSE (Mean Squared Error) comme fonction d'erreur
*/
void softmax_backward_cross_entropy(float* input, float* output, int size);
#ifdef __CUDACC__
extern "C"
#endif
/*
* Transfert les informations d'erreur à travers une couche d'average pooling
* en considérant cross_entropy comme fonction d'erreur
*/
void backward_average_pooling(float*** input, float*** output, int input_width, int output_width, int depth);
#ifdef __CUDACC__
extern "C"
#endif
/*
* Transfert les informations d'erreur à travers une couche de max pooling
* en considérant cross_entropy comme fonction d'erreur
*/
void backward_max_pooling(float*** input, float*** output, int input_width, int output_width, int depth);
#ifdef __CUDACC__
extern "C"
#endif
/*
* Transfert les informations d'erreur à travers une couche fully connected
*/
void backward_dense(Kernel_nn* ker, float* input, float* input_z, float* output, int size_input, int size_output, funcPtr d_function, int is_first);
void backward_dense(Kernel_nn* ker, float* input, float* input_z, float* output, int size_input, int size_output, int activation, int is_first);
#ifdef __CUDACC__
extern "C"
#endif
/*
* Transfert les informations d'erreur à travers une couche de linéarisation
*/
void backward_linearisation(Kernel_nn* ker, float*** input, float*** input_z, float* output, int depth_input, int dim_input, int size_output, funcPtr d_function);
void backward_linearisation(Kernel_nn* ker, float*** input, float*** input_z, float* output, int depth_input, int dim_input, int size_output, int activation);
#ifdef __CUDACC__
extern "C"
#endif
/*
* Transfert les informations d'erreur à travers un couche de convolution
*/
void backward_convolution(Kernel_cnn* ker, float*** input, float*** input_z, float*** output, int depth_input, int dim_input, int depth_output, int dim_output, funcPtr d_function, int is_first);
void backward_convolution(Kernel_cnn* ker, float*** input, float*** input_z, float*** output, int depth_input, int dim_input, int depth_output, int dim_output, int activation, int is_first);
#endif

View File

@ -51,7 +51,7 @@ float* test_network_mnist(Network* network, char* images_file, char* labels_file
// Compute loss
wanted_output = generate_wanted_output(labels[i], 10);
loss += compute_mean_squared_error(network->input[network->size-1][0][0], wanted_output, 10);
free(wanted_output);
gree(wanted_output);
for (int j=0; j < height; j++) {
free(images[i][j]);
@ -60,7 +60,7 @@ float* test_network_mnist(Network* network, char* images_file, char* labels_file
}
free(images);
float* results = malloc(sizeof(float)*2);
float* results = (float*)malloc(sizeof(float)*2);
results[0] = 100*accuracy/(float)nb_elem;
results[1] = loss/(float)nb_elem;
return results;
@ -90,7 +90,7 @@ float* test_network_jpg(Network* network, char* data_dir, bool preview_fails, bo
free(dataset->images[i]);
}
float* results = malloc(sizeof(float)*2);
float* results = (float*)malloc(sizeof(float)*2);
results[0] = 100*accuracy/(float)dataset->numImages;
results[1] = 0;

View File

@ -62,7 +62,7 @@ void* train_thread(void* parameters) {
wanted_output = generate_wanted_output(labels[index[i]], 10);
loss += compute_mean_squared_error(network->input[network->size-1][0][0], wanted_output, 10);
free(wanted_output);
gree(wanted_output);
backward_propagation(network, labels[index[i]]);