Add function.cu

Translate `apply_function_input` and `get_activation_function` to CUDA
This commit is contained in:
augustin64 2023-03-26 17:14:07 +02:00
parent e4003aea28
commit 677de892e7
8 changed files with 751 additions and 62 deletions

View File

@ -95,7 +95,7 @@ $(BUILDDIR)/cnn-main-cuda: $(BUILDDIR)/cnn_main.cuda.o \
$(BUILDDIR)/cnn_initialisation.cuda.o \
$(BUILDDIR)/cnn_cuda_make.o \
$(BUILDDIR)/cnn_neuron_io.cuda.o \
$(BUILDDIR)/cnn_function.cuda.o \
$(BUILDDIR)/cnn_cuda_function.o \
$(BUILDDIR)/cnn_utils.cuda.o \
$(BUILDDIR)/cnn_update.cuda.o \
$(BUILDDIR)/cnn_free.cuda.o \
@ -223,4 +223,5 @@ $(CACHE_DIR)/mnist-reseau-cnn.bin: $(BUILDDIR)/cnn-main
#
clean:
rm -rf $(BUILDDIR)/*
rm -f $(CACHE_DIR)/*
#rm -f $(CACHE_DIR)/*

View File

@ -82,7 +82,7 @@ void backward_max_pooling(float*** input, float*** output, int input_width, int
}
}
void backward_dense(Kernel_nn* ker, float* input, float* input_z, float* output, int size_input, int size_output, ptr d_function, int is_first) {
void backward_dense(Kernel_nn* ker, float* input, float* input_z, float* output, int size_input, int size_output, funcPtr d_function, int is_first) {
// Bias
for (int j=0; j < size_output; j++) {
ker->d_bias[j] += output[j];
@ -109,7 +109,7 @@ void backward_dense(Kernel_nn* ker, float* input, float* input_z, float* output,
}
}
void backward_linearisation(Kernel_nn* ker, float*** input, float*** input_z, float* output, int depth_input, int dim_input, int size_output, ptr d_function) {
void backward_linearisation(Kernel_nn* ker, float*** input, float*** input_z, float* output, int depth_input, int dim_input, int size_output,funcPtr d_function) {
// Bias
for (int j=0; j < size_output; j++) {
ker->d_bias[j] += output[j];
@ -144,7 +144,7 @@ void backward_linearisation(Kernel_nn* ker, float*** input, float*** input_z, fl
}
}
void backward_convolution(Kernel_cnn* ker, float*** input, float*** input_z, float*** output, int depth_input, int dim_input, int depth_output, int dim_output, ptr d_function, int is_first) {
void backward_convolution(Kernel_cnn* ker, float*** input, float*** input_z, float*** output, int depth_input, int dim_input, int depth_output, int dim_output, funcPtr d_function, int is_first) {
// Bias
for (int i=0; i < depth_output; i++) {
for (int j=0; j < dim_output; j++) {

View File

@ -251,10 +251,10 @@ void backward_propagation(Network* network, int wanted_number) {
if (k_i->cnn) { // Convolution
ptr d_f = get_activation_function(-activation);
funcPtr d_f = get_activation_function(-activation);
backward_convolution(k_i->cnn, input, input_z, output, input_depth, input_width, output_depth, output_width, d_f, i==0);
} else if (k_i->nn) { // Full connection
ptr d_f = get_activation_function(-activation);
funcPtr d_f = get_activation_function(-activation);
if (k_i->linearisation == DOESNT_LINEARISE) { // Vecteur -> Vecteur
backward_dense(k_i->nn, input[0][0], input_z[0][0], output[0][0], input_width, output_width, d_f, i==0);
} else { // Matrice -> vecteur

View File

@ -3,9 +3,26 @@
#include <float.h>
#include "../include/colors.h"
#include "../include/utils.h"
#include "include/function.h"
#define BLOCKSIZE_x 16
#define BLOCKSIZE_y 8
#define BLOCKSIZE_z 8
//* Identity
#ifdef __CUDACC__
__device__ float device_identity(float x) {
return x;
}
__device__ float device_identity_derivative(float x) {
(void)x;
return 1;
}
#endif
float identity(float x) {
return x;
}
@ -16,6 +33,18 @@ float identity_derivative(float x) {
}
//* Sigmoid
#ifdef __CUDACC__
__device__ float device_sigmoid(float x) {
return 1/(1 + exp(-x));
}
__device__ float device_sigmoid_derivative(float x) {
float tmp = exp(-x);
return tmp/((1+tmp)*(1+tmp));
}
#endif
float sigmoid(float x) {
return 1/(1 + exp(-x));
}
@ -26,6 +55,19 @@ float sigmoid_derivative(float x) {
}
//* RELU
#ifdef __CUDACC__
__device__ float device_relu(float x) {
return fmaxf(0, fminf(x, RELU_CLIP_VALUE));
}
__device__ float device_relu_derivative(float x) {
if (x > 0)
return 1;
return 0;
}
#endif
float relu(float x) {
return fmaxf(0, fminf(x, RELU_CLIP_VALUE));
}
@ -37,6 +79,21 @@ float relu_derivative(float x) {
}
//* Leaky RELU
#ifdef __CUDACC__
__device__ float device_leaky_relu(float x) {
if (x>0)
return fminf(x, RELU_CLIP_VALUE);
return x*LEAKER;
}
__device__ float device_leaky_relu_derivative(float x) {
if (x > 0)
return 1;
return LEAKER;
}
#endif
float leaky_relu(float x) {
if (x>0)
return fminf(x, RELU_CLIP_VALUE);
@ -50,6 +107,22 @@ float leaky_relu_derivative(float x) {
}
//* Tanh
#ifdef __CUDACC__
__device__
#endif
float device_tanh_(float x) {
return tanh(x);
}
#ifdef __CUDACC__
__device__
#endif
float device_tanh_derivative(float x) {
float a = tanh(x);
return 1 - a*a;
}
float tanh_(float x) {
return tanh(x);
}
@ -60,6 +133,28 @@ float tanh_derivative(float x) {
}
#ifdef __CUDACC__
/*
* Définition des pointeurs de fonctions pour CUDA
* voir https://stackoverflow.com/a/15646771
*/
__device__ funcPtr ptr_sigmoid = device_sigmoid;
__device__ funcPtr ptr_relu = device_relu;
__device__ funcPtr ptr_leaky_relu = device_leaky_relu;
__device__ funcPtr ptr_tanh = device_tanh_;
__device__ funcPtr ptr_identity = device_identity;
__device__ funcPtr ptr_identity_derivative = device_identity_derivative;
__device__ funcPtr ptr_sigmoid_derivative = device_sigmoid_derivative;
__device__ funcPtr ptr_relu_derivative = device_relu_derivative;
__device__ funcPtr ptr_leaky_relu_derivative = device_leaky_relu_derivative;
__device__ funcPtr ptr_tanh_derivative = device_tanh_derivative;
#endif
void apply_softmax_input(float ***input, int depth, int rows, int columns) {
float m = -FLT_MAX;
float sum=0;
@ -88,7 +183,41 @@ void apply_softmax_input(float ***input, int depth, int rows, int columns) {
}
void apply_function_input(float (*f)(float), float*** input, int depth, int rows, int columns) {
/*
* Apply function on input
*/
#ifdef __CUDACC__
__global__ void apply_function_input_kernel(funcPtr f, float*** input, int depth, int rows, int columns) {
// Équivalents respectifs de i, j et k dans la boucle effectuée par le cpu
int idx = threadIdx.x + blockDim.x*blockIdx.x; // < depth
int idy = threadIdx.y + blockDim.y*blockIdx.y; // < rows
int idz = threadIdx.z + blockDim.z*blockIdx.z; // < columns
if (idx >= depth || idy >= rows || idz >= columns) {
return;
}
input[idx][idy][idz] = (*f)(input[idx][idy][idz]);
}
void apply_function_input_device(int activation, float*** input, int depth, int rows, int columns) {
// Make computation
dim3 gridSize(i_div_up(depth, BLOCKSIZE_x), i_div_up(rows, BLOCKSIZE_y), i_div_up(columns, BLOCKSIZE_z));
dim3 blockSize(BLOCKSIZE_x, BLOCKSIZE_y, BLOCKSIZE_z);
funcPtr activation_function = get_activation_function_cuda(activation);
apply_function_input_kernel<<<gridSize, blockSize>>>(activation_function, input, depth, rows, columns);
gpuErrchk( cudaPeekAtLastError() );
gpuErrchk( cudaDeviceSynchronize() );
}
#endif
void apply_function_input_cpu(int activation, float*** input, int depth, int rows, int columns) {
funcPtr f = get_activation_function(activation);
for (int i=0; i < depth; i++) {
for (int j=0; j < rows; j++) {
for (int k=0; k < columns; k++) {
@ -98,15 +227,25 @@ void apply_function_input(float (*f)(float), float*** input, int depth, int rows
}
}
#ifdef __CUDACC__
extern "C"
#endif
void apply_function_input(int activation, float*** input, int depth, int rows, int columns) {
#ifndef __CUDACC__
apply_function_input_cpu(activation, input, depth, rows, columns);
#else
apply_function_input_device(activation, input, depth, rows, columns);
#endif
}
void apply_function_to_matrix(int activation, float*** input, int depth, int dim) {
if (activation == SOFTMAX) {
return apply_softmax_input(input, depth, dim, dim);
}
if (activation >= 1) { // Exclude negative values (derivative)
ptr f = get_activation_function(activation);
return apply_function_input(f, input, depth, dim, dim);
return apply_function_input(activation, input, depth, dim, dim);
}
printf_error("fonction d'activation inconnue (apply_function_to_matrix): ");
printf_error((char*)"fonction d'activation inconnue (apply_function_to_matrix): ");
printf("%d\n", activation);
}
@ -116,59 +255,107 @@ void apply_function_to_vector(int activation, float*** input, int dim) {
return apply_softmax_input(input, 1, 1, dim);
}
if (activation >= 1) { // Exclude negative values (derivative)
ptr f = get_activation_function(activation);
return apply_function_input(f, input, 1, 1, dim);
return apply_function_input(activation, input, 1, 1, dim);
}
printf_error("fonction d'activation inconnue (apply_function_to_vector): ");
printf_error((char*)"fonction d'activation inconnue (apply_function_to_vector): ");
printf("%d\n", activation);
}
ptr get_activation_function(int activation) {
if (activation == RELU) {
return &relu;
}
if (activation == -RELU) {
return &relu_derivative;
}
funcPtr get_activation_function(int activation) {
switch (activation) {
case RELU:
return &relu;
case -RELU:
return &relu_derivative;
if (activation == IDENTITY) {
return &identity;
}
if (activation == -IDENTITY) {
return &identity_derivative;
}
case IDENTITY:
return &identity;
case -IDENTITY:
return &identity_derivative;
if (activation == SIGMOID) {
return &sigmoid;
}
if (activation == -SIGMOID) {
return &sigmoid_derivative;
}
case SIGMOID:
return &sigmoid;
case -SIGMOID:
return &sigmoid_derivative;
if (activation == SOFTMAX) {
printf_error("impossible de renvoyer la fonction softmax\n");
return NULL;
}
if (activation == -SOFTMAX) {
printf_error("impossible de renvoyer la dérivée de la fonction softmax\n");
return NULL;
}
case LEAKY_RELU:
return &leaky_relu;
case -LEAKY_RELU:
return &leaky_relu_derivative;
if (activation == TANH) {
return &tanh_;
}
if (activation == -TANH) {
return &tanh_derivative;
}
case TANH:
return &tanh_;
case -TANH:
return &tanh_derivative;
if (activation == LEAKY_RELU) {
return &leaky_relu;
case SOFTMAX:
printf_error((char*)"impossible de renvoyer la fonction softmax\n");
return NULL;
case -SOFTMAX:
printf_error((char*)"impossible de renvoyer la dérivée de la fonction softmax\n");
return NULL;
default:
printf_error((char*)"fonction d'activation inconnue (get_activation_function_cuda): ");
printf("%d\n", activation);
return NULL;
}
if (activation == -LEAKY_RELU) {
return &leaky_relu_derivative;
}
printf_error("fonction d'activation inconnue (get_activation_function): ");
printf("%d\n", activation);
return NULL;
}
#ifdef __CUDACC__
funcPtr get_activation_function_cuda(int activation) {
funcPtr host_function;
switch (activation) {
case RELU:
gpuErrchk( cudaMemcpyFromSymbol(&host_function, ptr_relu, sizeof(funcPtr)));
break;
case -RELU:
gpuErrchk( cudaMemcpyFromSymbol(&host_function, ptr_relu_derivative, sizeof(funcPtr)));
break;
case IDENTITY:
gpuErrchk( cudaMemcpyFromSymbol(&host_function, ptr_identity, sizeof(funcPtr)));
break;
case -IDENTITY:
gpuErrchk( cudaMemcpyFromSymbol(&host_function, ptr_identity_derivative, sizeof(funcPtr)));
break;
case SIGMOID:
gpuErrchk( cudaMemcpyFromSymbol(&host_function, ptr_sigmoid, sizeof(funcPtr)));
break;
case -SIGMOID:
gpuErrchk( cudaMemcpyFromSymbol(&host_function, ptr_sigmoid_derivative, sizeof(funcPtr)));
break;
case LEAKY_RELU:
gpuErrchk( cudaMemcpyFromSymbol(&host_function, ptr_leaky_relu, sizeof(funcPtr)));
break;
case -LEAKY_RELU:
gpuErrchk( cudaMemcpyFromSymbol(&host_function, ptr_leaky_relu_derivative, sizeof(funcPtr)));
break;
case TANH:
gpuErrchk( cudaMemcpyFromSymbol(&host_function, ptr_tanh, sizeof(funcPtr)));
break;
case -TANH:
gpuErrchk( cudaMemcpyFromSymbol(&host_function, ptr_tanh_derivative, sizeof(funcPtr)));
break;
case SOFTMAX:
printf_error((char*)"impossible de renvoyer la fonction softmax\n");
return NULL;
case -SOFTMAX:
printf_error((char*)"impossible de renvoyer la dérivée de la fonction softmax\n");
return NULL;
default:
printf_error((char*)"fonction d'activation inconnue (get_activation_function_cuda): ");
printf("%d\n", activation);
return NULL;
}
return host_function;
}
#endif

361
src/cnn/function.cu Normal file
View File

@ -0,0 +1,361 @@
#include <stdio.h>
#include <math.h>
#include <float.h>
#include "../include/colors.h"
#include "../include/utils.h"
#include "include/function.h"
#define BLOCKSIZE_x 16
#define BLOCKSIZE_y 8
#define BLOCKSIZE_z 8
//* Identity
#ifdef __CUDACC__
__device__ float device_identity(float x) {
return x;
}
__device__ float device_identity_derivative(float x) {
(void)x;
return 1;
}
#endif
float identity(float x) {
return x;
}
float identity_derivative(float x) {
(void)x;
return 1;
}
//* Sigmoid
#ifdef __CUDACC__
__device__ float device_sigmoid(float x) {
return 1/(1 + exp(-x));
}
__device__ float device_sigmoid_derivative(float x) {
float tmp = exp(-x);
return tmp/((1+tmp)*(1+tmp));
}
#endif
float sigmoid(float x) {
return 1/(1 + exp(-x));
}
float sigmoid_derivative(float x) {
float tmp = exp(-x);
return tmp/((1+tmp)*(1+tmp));
}
//* RELU
#ifdef __CUDACC__
__device__ float device_relu(float x) {
return fmaxf(0, fminf(x, RELU_CLIP_VALUE));
}
__device__ float device_relu_derivative(float x) {
if (x > 0)
return 1;
return 0;
}
#endif
float relu(float x) {
return fmaxf(0, fminf(x, RELU_CLIP_VALUE));
}
float relu_derivative(float x) {
if (x > 0)
return 1;
return 0;
}
//* Leaky RELU
#ifdef __CUDACC__
__device__ float device_leaky_relu(float x) {
if (x>0)
return fminf(x, RELU_CLIP_VALUE);
return x*LEAKER;
}
__device__ float device_leaky_relu_derivative(float x) {
if (x > 0)
return 1;
return LEAKER;
}
#endif
float leaky_relu(float x) {
if (x>0)
return fminf(x, RELU_CLIP_VALUE);
return x*LEAKER;
}
float leaky_relu_derivative(float x) {
if (x > 0)
return 1;
return LEAKER;
}
//* Tanh
#ifdef __CUDACC__
__device__
#endif
float device_tanh_(float x) {
return tanh(x);
}
#ifdef __CUDACC__
__device__
#endif
float device_tanh_derivative(float x) {
float a = tanh(x);
return 1 - a*a;
}
float tanh_(float x) {
return tanh(x);
}
float tanh_derivative(float x) {
float a = tanh(x);
return 1 - a*a;
}
#ifdef __CUDACC__
/*
* Définition des pointeurs de fonctions pour CUDA
* voir https://stackoverflow.com/a/15646771
*/
__device__ funcPtr ptr_sigmoid = device_sigmoid;
__device__ funcPtr ptr_relu = device_relu;
__device__ funcPtr ptr_leaky_relu = device_leaky_relu;
__device__ funcPtr ptr_tanh = device_tanh_;
__device__ funcPtr ptr_identity = device_identity;
__device__ funcPtr ptr_identity_derivative = device_identity_derivative;
__device__ funcPtr ptr_sigmoid_derivative = device_sigmoid_derivative;
__device__ funcPtr ptr_relu_derivative = device_relu_derivative;
__device__ funcPtr ptr_leaky_relu_derivative = device_leaky_relu_derivative;
__device__ funcPtr ptr_tanh_derivative = device_tanh_derivative;
#endif
void apply_softmax_input(float ***input, int depth, int rows, int columns) {
float m = -FLT_MAX;
float sum=0;
for (int i=0; i < depth; i++) {
for (int j=0; j < rows; j++) {
for (int k=0; k < columns; k++) {
m = fmaxf(m, input[i][j][k]);
}
}
}
for (int i=0; i < depth; i++) {
for (int j=0; j < rows; j++) {
for (int k=0; k < columns; k++) {
input[i][j][k] = exp(m-input[i][j][k]);
sum += input[i][j][k];
}
}
}
for (int i=0; i < depth; i++) {
for (int j=0; j < rows; j++) {
for (int k=0; k < columns; k++) {
input[i][j][k] = input[i][j][k]/sum;
}
}
}
}
/*
* Apply function on input
*/
#ifdef __CUDACC__
__global__ void apply_function_input_kernel(funcPtr f, float*** input, int depth, int rows, int columns) {
// Équivalents respectifs de i, j et k dans la boucle effectuée par le cpu
int idx = threadIdx.x + blockDim.x*blockIdx.x; // < depth
int idy = threadIdx.y + blockDim.y*blockIdx.y; // < rows
int idz = threadIdx.z + blockDim.z*blockIdx.z; // < columns
if (idx >= depth || idy >= rows || idz >= columns) {
return;
}
input[idx][idy][idz] = (*f)(input[idx][idy][idz]);
}
void apply_function_input_device(int activation, float*** input, int depth, int rows, int columns) {
// Make computation
dim3 gridSize(i_div_up(depth, BLOCKSIZE_x), i_div_up(rows, BLOCKSIZE_y), i_div_up(columns, BLOCKSIZE_z));
dim3 blockSize(BLOCKSIZE_x, BLOCKSIZE_y, BLOCKSIZE_z);
funcPtr activation_function = get_activation_function_cuda(activation);
apply_function_input_kernel<<<gridSize, blockSize>>>(activation_function, input, depth, rows, columns);
gpuErrchk( cudaPeekAtLastError() );
gpuErrchk( cudaDeviceSynchronize() );
}
#endif
void apply_function_input_cpu(int activation, float*** input, int depth, int rows, int columns) {
funcPtr f = get_activation_function(activation);
for (int i=0; i < depth; i++) {
for (int j=0; j < rows; j++) {
for (int k=0; k < columns; k++) {
input[i][j][k] = (*f)(input[i][j][k]);
}
}
}
}
#ifdef __CUDACC__
extern "C"
#endif
void apply_function_input(int activation, float*** input, int depth, int rows, int columns) {
#ifndef __CUDACC__
apply_function_input_cpu(activation, input, depth, rows, columns);
#else
apply_function_input_device(activation, input, depth, rows, columns);
#endif
}
void apply_function_to_matrix(int activation, float*** input, int depth, int dim) {
if (activation == SOFTMAX) {
return apply_softmax_input(input, depth, dim, dim);
}
if (activation >= 1) { // Exclude negative values (derivative)
return apply_function_input(activation, input, depth, dim, dim);
}
printf_error((char*)"fonction d'activation inconnue (apply_function_to_matrix): ");
printf("%d\n", activation);
}
void apply_function_to_vector(int activation, float*** input, int dim) {
if (activation == SOFTMAX) {
return apply_softmax_input(input, 1, 1, dim);
}
if (activation >= 1) { // Exclude negative values (derivative)
return apply_function_input(activation, input, 1, 1, dim);
}
printf_error((char*)"fonction d'activation inconnue (apply_function_to_vector): ");
printf("%d\n", activation);
}
funcPtr get_activation_function(int activation) {
switch (activation) {
case RELU:
return &relu;
case -RELU:
return &relu_derivative;
case IDENTITY:
return &identity;
case -IDENTITY:
return &identity_derivative;
case SIGMOID:
return &sigmoid;
case -SIGMOID:
return &sigmoid_derivative;
case LEAKY_RELU:
return &leaky_relu;
case -LEAKY_RELU:
return &leaky_relu_derivative;
case TANH:
return &tanh_;
case -TANH:
return &tanh_derivative;
case SOFTMAX:
printf_error((char*)"impossible de renvoyer la fonction softmax\n");
return NULL;
case -SOFTMAX:
printf_error((char*)"impossible de renvoyer la dérivée de la fonction softmax\n");
return NULL;
default:
printf_error((char*)"fonction d'activation inconnue (get_activation_function_cuda): ");
printf("%d\n", activation);
return NULL;
}
}
#ifdef __CUDACC__
funcPtr get_activation_function_cuda(int activation) {
funcPtr host_function;
switch (activation) {
case RELU:
gpuErrchk( cudaMemcpyFromSymbol(&host_function, ptr_relu, sizeof(funcPtr)));
break;
case -RELU:
gpuErrchk( cudaMemcpyFromSymbol(&host_function, ptr_relu_derivative, sizeof(funcPtr)));
break;
case IDENTITY:
gpuErrchk( cudaMemcpyFromSymbol(&host_function, ptr_identity, sizeof(funcPtr)));
break;
case -IDENTITY:
gpuErrchk( cudaMemcpyFromSymbol(&host_function, ptr_identity_derivative, sizeof(funcPtr)));
break;
case SIGMOID:
gpuErrchk( cudaMemcpyFromSymbol(&host_function, ptr_sigmoid, sizeof(funcPtr)));
break;
case -SIGMOID:
gpuErrchk( cudaMemcpyFromSymbol(&host_function, ptr_sigmoid_derivative, sizeof(funcPtr)));
break;
case LEAKY_RELU:
gpuErrchk( cudaMemcpyFromSymbol(&host_function, ptr_leaky_relu, sizeof(funcPtr)));
break;
case -LEAKY_RELU:
gpuErrchk( cudaMemcpyFromSymbol(&host_function, ptr_leaky_relu_derivative, sizeof(funcPtr)));
break;
case TANH:
gpuErrchk( cudaMemcpyFromSymbol(&host_function, ptr_tanh, sizeof(funcPtr)));
break;
case -TANH:
gpuErrchk( cudaMemcpyFromSymbol(&host_function, ptr_tanh_derivative, sizeof(funcPtr)));
break;
case SOFTMAX:
printf_error((char*)"impossible de renvoyer la fonction softmax\n");
return NULL;
case -SOFTMAX:
printf_error((char*)"impossible de renvoyer la dérivée de la fonction softmax\n");
return NULL;
default:
printf_error((char*)"fonction d'activation inconnue (get_activation_function_cuda): ");
printf("%d\n", activation);
return NULL;
}
return host_function;
}
#endif

View File

@ -40,16 +40,16 @@ void backward_max_pooling(float*** input, float*** output, int input_width, int
/*
* Transfert les informations d'erreur à travers une couche fully connected
*/
void backward_dense(Kernel_nn* ker, float* input, float* input_z, float* output, int size_input, int size_output, ptr d_function, int is_first);
void backward_dense(Kernel_nn* ker, float* input, float* input_z, float* output, int size_input, int size_output, funcPtr d_function, int is_first);
/*
* Transfert les informations d'erreur à travers une couche de linéarisation
*/
void backward_linearisation(Kernel_nn* ker, float*** input, float*** input_z, float* output, int depth_input, int dim_input, int size_output, ptr d_function);
void backward_linearisation(Kernel_nn* ker, float*** input, float*** input_z, float* output, int depth_input, int dim_input, int size_output, funcPtr d_function);
/*
* Transfert les informations d'erreur à travers un couche de convolution
*/
void backward_convolution(Kernel_cnn* ker, float*** input, float*** input_z, float*** output, int depth_input, int dim_input, int depth_output, int dim_output, ptr d_function, int is_first);
void backward_convolution(Kernel_cnn* ker, float*** input, float*** input_z, float*** output, int depth_input, int dim_input, int depth_output, int dim_output, funcPtr d_function, int is_first);
#endif

View File

@ -16,52 +16,132 @@
#define RELU_CLIP_VALUE 15
typedef float (*ptr)(float);
typedef ptr (*pm)();
typedef float (*funcPtr)(float);
//* Identité
#ifdef __CUDACC__
__device__ float device_identity(float x);
__device__ float device_identity_derivative(float x);
#endif
#ifdef __CUDACC__
extern "C"
#endif
float identity(float x);
#ifdef __CUDACC__
extern "C"
#endif
float identity_derivative(float x);
//* Sigmoid
#ifdef __CUDACC__
__device__ float device_sigmoid(float x);
__device__ float device_sigmoid_derivative(float x);
#endif
#ifdef __CUDACC__
extern "C"
#endif
float sigmoid(float x);
#ifdef __CUDACC__
extern "C"
#endif
float sigmoid_derivative(float x);
//* RELU
#ifdef __CUDACC__
__device__ float device_relu(float x);
__device__ float device_relu_derivative(float x);
#endif
#ifdef __CUDACC__
extern "C"
#endif
float relu(float x);
#ifdef __CUDACC__
extern "C"
#endif
float relu_derivative(float x);
//* Leaky RELU
#ifdef __CUDACC__
__device__ float device_leaky_relu(float x);
__device__ float device_leaky_relu_derivative(float x);
#endif
#ifdef __CUDACC__
extern "C"
#endif
float leaky_relu(float x);
#ifdef __CUDACC__
extern "C"
#endif
float leaky_relu_derivative(float x);
//* Tanh
#ifdef __CUDACC__
__device__ float device_tanh_(float x);
__device__ float device_tanh_derivative(float x);
#endif
#ifdef __CUDACC__
extern "C"
#endif
float tanh_(float x);
#ifdef __CUDACC__
extern "C"
#endif
float tanh_derivative(float x);
#ifdef __CUDACC__
extern "C"
#endif
/*
* Applique softmax sur input[depth][rows][columns]
*/
void apply_softmax_input(float ***input, int depth, int rows, int columns);
#ifdef __CUDACC__
extern "C"
#endif
/*
* Applique la fonction f sur input[depth][rows][columns]
*/
void apply_function_input(float (*f)(float), float*** input, int depth, int rows, int columns);
void apply_function_input(int activation, float*** input, int depth, int rows, int columns);
#ifdef __CUDACC__
extern "C"
#endif
/*
* Applique une fonction d'activation (repérée par son identifiant) à une matrice
*/
void apply_function_to_matrix(int activation, float*** input, int depth, int dim);
#ifdef __CUDACC__
extern "C"
#endif
/*
* Applique une fonction d'activation (repérée par son identifiant) à un vecteur
*/
void apply_function_to_vector(int activation, float*** input, int dim);
#ifdef __CUDACC__
extern "C"
#endif
/*
* Renvoie la fonction d'activation correspondant à son identifiant (activation)
*/
ptr get_activation_function(int activation);
funcPtr get_activation_function(int activation);
/*
* Récupère un pointeur sur le device vers la fonction d'activation demandée puis le transforme en pointeur sur l'host
*/
funcPtr get_activation_function_cuda(int activation);
#endif

60
test/cnn_function.cu Normal file
View File

@ -0,0 +1,60 @@
#include <stdlib.h>
#include <assert.h>
#include <stdio.h>
#include "../src/include/memory_management.h"
#include "../src/cnn/include/function.h"
#include "../src/include/colors.h"
int main() {
printf("Initialisation\n");
// Initialise values
int depth = 10;
int rows = 10;
int columns = 10;
float*** input = (float***)nalloc(depth, sizeof(float**));
float*** input_initial = (float***)malloc(depth*sizeof(float**));
for (int i=0; i < depth; i++) {
input[i] = (float**)nalloc(rows, sizeof(float*));
input_initial[i] = (float**)malloc(rows*sizeof(float*));
for (int j=0; j < rows; j++) {
input[i][j] = (float*)nalloc(columns, sizeof(float));
input_initial[i][j] = (float*)malloc(columns*sizeof(float));
for (int k=0; k < columns; k++) {
input[i][j][k] = rand()/RAND_MAX;
input_initial[i][j][k] = input[i][j][k];
}
}
}
printf(GREEN "OK\n" RESET);
funcPtr func = get_activation_function(TANH);
printf("Calcul par CUDA\n");
apply_function_input(TANH, input, depth, rows, columns);
printf(GREEN "OK\n" RESET);
printf("Vérification des résultats\n");
for (int i=0; i < depth; i++) {
for (int j=0; j < rows; j++) {
for (int k=0; k < columns; k++) {
if (fabs((*func)(input_initial[i][j][k]) - input[i][j][k]) > 1e-6) {
printf_error((char*)"Les résultats ne coincident pas\n");
printf("Différence %e\n", fabs((*func)(input_initial[i][j][k]) - input[i][j][k]));
//exit(1);
}
}
gree(input[i][j]);
free(input_initial[i][j]);
}
gree(input[i]);
free(input_initial[i]);
}
gree(input);
free(input_initial);
printf(GREEN "OK\n" RESET);
return 0;
}