mirror of
https://github.com/augustin64/projet-tipe
synced 2025-01-24 07:36:24 +01:00
Changes in forward
This commit is contained in:
parent
b7eda807fc
commit
66022a948e
@ -32,10 +32,10 @@ Network* create_network_lenet5(int dropout, int activation, int initialisation)
|
|||||||
Network* network = create_network(8, dropout, initialisation, 32, 1);
|
Network* network = create_network(8, dropout, initialisation, 32, 1);
|
||||||
network->kernel[0]->activation = activation;
|
network->kernel[0]->activation = activation;
|
||||||
network->kernel[0]->linearisation = 0;
|
network->kernel[0]->linearisation = 0;
|
||||||
add_convolution(network, 6, 5, activation);
|
add_convolution(network, 1, 32, 6, 28, activation);
|
||||||
add_2d_average_pooling(network, 2);
|
add_2d_average_pooling(network, 28, 14);
|
||||||
add_convolution(network, 16, 5, activation);
|
add_convolution(network, 6, 14, 16, 10, activation);
|
||||||
add_2d_average_pooling(network, 2);
|
add_2d_average_pooling(network, 10, 5);
|
||||||
add_dense_linearisation(network, 160, 120, activation);
|
add_dense_linearisation(network, 160, 120, activation);
|
||||||
add_dense(network, 120, 84, activation);
|
add_dense(network, 120, 84, activation);
|
||||||
add_dense(network, 84, 10, SOFTMAX);
|
add_dense(network, 84, 10, SOFTMAX);
|
||||||
@ -62,45 +62,38 @@ void create_a_line_input_layer(Network* network, int pos, int dim) {
|
|||||||
network->depth[pos] = 1;
|
network->depth[pos] = 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
void add_2d_average_pooling(Network* network, int kernel_size) {
|
void add_2d_average_pooling(Network* network, int dim_input, int dim_ouput) {
|
||||||
int n = network->size;
|
int n = network->size;
|
||||||
|
int k_pos = n-1;
|
||||||
if (network->max_size == n) {
|
if (network->max_size == n) {
|
||||||
printf("Impossible de rajouter une couche d'average pooling, le réseau est déjà plein\n");
|
printf("Impossible de rajouter une couche d'average pooling, le réseau est déjà plein\n");
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
network->kernel[n]->cnn = NULL;
|
int kernel_size = dim_input/dim_ouput;
|
||||||
network->kernel[n]->nn = NULL;
|
if (dim_input%dim_ouput != 0) {
|
||||||
network->kernel[n]->activation = 100*kernel_size; // Ne contient pas de fonction d'activation
|
printf("Erreur de dimension dans l'average pooling\n");
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
network->kernel[k_pos]->cnn = NULL;
|
||||||
|
network->kernel[k_pos]->nn = NULL;
|
||||||
|
network->kernel[k_pos]->activation = 100*kernel_size; // Ne contient pas de fonction d'activation
|
||||||
create_a_cube_input_layer(network, n, network->depth[n-1], network->width[n-1]/2);
|
create_a_cube_input_layer(network, n, network->depth[n-1], network->width[n-1]/2);
|
||||||
network->size++;
|
network->size++;
|
||||||
}
|
}
|
||||||
|
|
||||||
void add_average_pooling_flatten(Network* network, int kernel_size) { // NEED TO BE VERIFIED
|
void add_convolution(Network* network, int depth_input, int dim_input, int depth_output, int dim_output, int activation) {
|
||||||
int n = network->size;
|
|
||||||
if (network->max_size == n) {
|
|
||||||
printf("Impossible de rajouter une couche d'average pooling, le réseau est déjà plein\n");
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
network->kernel[n]->cnn = NULL;
|
|
||||||
network->kernel[n]->nn = NULL;
|
|
||||||
network->kernel[n]->activation = 100*kernel_size; // Ne contient pas de fonction d'activation
|
|
||||||
int dim = (network->width[n-1]*network->width[n-1]*network->depth[n-1])/(kernel_size*kernel_size);
|
|
||||||
create_a_line_input_layer(network, n, dim);
|
|
||||||
network->size++;
|
|
||||||
}
|
|
||||||
|
|
||||||
void add_convolution(Network* network, int depth_output, int kernel_size, int activation) {
|
|
||||||
int n = network->size;
|
int n = network->size;
|
||||||
|
int k_pos = n-1;
|
||||||
if (network->max_size == n) {
|
if (network->max_size == n) {
|
||||||
printf("Impossible de rajouter une couche de convolution, le réseau est déjà plein \n");
|
printf("Impossible de rajouter une couche de convolution, le réseau est déjà plein \n");
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
int bias_size = network->width[n-1] - 2*(kernel_size/2);
|
int bias_size = dim_output;
|
||||||
int depth_input = network->depth[n-1];
|
int kernel_size = dim_input - dim_output +1;
|
||||||
network->kernel[n]->nn = NULL;
|
network->kernel[k_pos]->nn = NULL;
|
||||||
network->kernel[n]->activation = activation;
|
network->kernel[k_pos]->activation = activation;
|
||||||
network->kernel[n]->cnn = (Kernel_cnn*)malloc(sizeof(Kernel_cnn));
|
network->kernel[k_pos]->cnn = (Kernel_cnn*)malloc(sizeof(Kernel_cnn));
|
||||||
Kernel_cnn* cnn = network->kernel[n]->cnn;
|
Kernel_cnn* cnn = network->kernel[k_pos]->cnn;
|
||||||
|
|
||||||
cnn->k_size = kernel_size;
|
cnn->k_size = kernel_size;
|
||||||
cnn->rows = depth_input;
|
cnn->rows = depth_input;
|
||||||
@ -132,23 +125,26 @@ void add_convolution(Network* network, int depth_output, int kernel_size, int ac
|
|||||||
create_a_cube_input_layer(network, n, depth_output, bias_size);
|
create_a_cube_input_layer(network, n, depth_output, bias_size);
|
||||||
int n_int = network->width[n-1]*network->width[n-1]*network->depth[n-1];
|
int n_int = network->width[n-1]*network->width[n-1]*network->depth[n-1];
|
||||||
int n_out = network->width[n]*network->width[n]*network->depth[n];
|
int n_out = network->width[n]*network->width[n]*network->depth[n];
|
||||||
|
/* Not currently used
|
||||||
initialisation_3d_matrix(network->initialisation, cnn->bias, depth_output, kernel_size, kernel_size, n_int+n_out);
|
initialisation_3d_matrix(network->initialisation, cnn->bias, depth_output, kernel_size, kernel_size, n_int+n_out);
|
||||||
initialisation_3d_matrix(ZERO, cnn->d_bias, depth_output, kernel_size, kernel_size, n_int+n_out);
|
initialisation_3d_matrix(ZERO, cnn->d_bias, depth_output, kernel_size, kernel_size, n_int+n_out);
|
||||||
initialisation_4d_matrix(network->initialisation, cnn->w, depth_input, depth_output, kernel_size, kernel_size, n_int+n_out);
|
initialisation_4d_matrix(network->initialisation, cnn->w, depth_input, depth_output, kernel_size, kernel_size, n_int+n_out);
|
||||||
initialisation_4d_matrix(ZERO, cnn->d_w, depth_input, depth_output, kernel_size, kernel_size, n_int+n_out);
|
initialisation_4d_matrix(ZERO, cnn->d_w, depth_input, depth_output, kernel_size, kernel_size, n_int+n_out);
|
||||||
|
*/
|
||||||
network->size++;
|
network->size++;
|
||||||
}
|
}
|
||||||
|
|
||||||
void add_dense(Network* network, int input_units, int output_units, int activation) {
|
void add_dense(Network* network, int input_units, int output_units, int activation) {
|
||||||
int n = network->size;
|
int n = network->size;
|
||||||
|
int k_pos = n-1;
|
||||||
if (network->max_size == n) {
|
if (network->max_size == n) {
|
||||||
printf("Impossible de rajouter une couche dense, le réseau est déjà plein\n");
|
printf("Impossible de rajouter une couche dense, le réseau est déjà plein\n");
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
network->kernel[n]->cnn = NULL;
|
network->kernel[k_pos]->cnn = NULL;
|
||||||
network->kernel[n]->nn = (Kernel_nn*)malloc(sizeof(Kernel_nn));
|
network->kernel[k_pos]->nn = (Kernel_nn*)malloc(sizeof(Kernel_nn));
|
||||||
Kernel_nn* nn = network->kernel[n]->nn;
|
Kernel_nn* nn = network->kernel[k_pos]->nn;
|
||||||
network->kernel[n]->activation = activation;
|
network->kernel[k_pos]->activation = activation;
|
||||||
nn->input_units = input_units;
|
nn->input_units = input_units;
|
||||||
nn->output_units = output_units;
|
nn->output_units = output_units;
|
||||||
nn->bias = (float*)malloc(sizeof(float)*output_units);
|
nn->bias = (float*)malloc(sizeof(float)*output_units);
|
||||||
@ -159,11 +155,12 @@ void add_dense(Network* network, int input_units, int output_units, int activati
|
|||||||
nn->weights[i] = (float*)malloc(sizeof(float)*output_units);
|
nn->weights[i] = (float*)malloc(sizeof(float)*output_units);
|
||||||
nn->d_weights[i] = (float*)malloc(sizeof(float)*output_units);
|
nn->d_weights[i] = (float*)malloc(sizeof(float)*output_units);
|
||||||
}
|
}
|
||||||
|
/* Not currently used
|
||||||
initialisation_1d_matrix(network->initialisation, nn->bias, output_units, output_units+input_units);
|
initialisation_1d_matrix(network->initialisation, nn->bias, output_units, output_units+input_units);
|
||||||
initialisation_1d_matrix(ZERO, nn->d_bias, output_units, output_units+input_units);
|
initialisation_1d_matrix(ZERO, nn->d_bias, output_units, output_units+input_units);
|
||||||
initialisation_2d_matrix(network->initialisation, nn->weights, input_units, output_units, output_units+input_units);
|
initialisation_2d_matrix(network->initialisation, nn->weights, input_units, output_units, output_units+input_units);
|
||||||
initialisation_2d_matrix(ZERO, nn->d_weights, input_units, output_units, output_units+input_units);
|
initialisation_2d_matrix(ZERO, nn->d_weights, input_units, output_units, output_units+input_units);
|
||||||
create_a_line_input_layer(network, n, output_units);
|
create_a_line_input_layer(network, n, output_units); */
|
||||||
network->size++;
|
network->size++;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -171,14 +168,15 @@ void add_dense_linearisation(Network* network, int input_units, int output_units
|
|||||||
// Can replace input_units by a research of this dim
|
// Can replace input_units by a research of this dim
|
||||||
|
|
||||||
int n = network->size;
|
int n = network->size;
|
||||||
|
int k_pos = n-1;
|
||||||
if (network->max_size == n) {
|
if (network->max_size == n) {
|
||||||
printf("Impossible de rajouter une couche dense, le réseau est déjà plein\n");
|
printf("Impossible de rajouter une couche dense, le réseau est déjà plein\n");
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
network->kernel[n]->cnn = NULL;
|
network->kernel[k_pos]->cnn = NULL;
|
||||||
network->kernel[n]->nn = (Kernel_nn*)malloc(sizeof(Kernel_nn));
|
network->kernel[k_pos]->nn = (Kernel_nn*)malloc(sizeof(Kernel_nn));
|
||||||
Kernel_nn* nn = network->kernel[n]->nn;
|
Kernel_nn* nn = network->kernel[k_pos]->nn;
|
||||||
network->kernel[n]->activation = activation;
|
network->kernel[k_pos]->activation = activation;
|
||||||
nn->input_units = input_units;
|
nn->input_units = input_units;
|
||||||
nn->output_units = output_units;
|
nn->output_units = output_units;
|
||||||
|
|
||||||
@ -190,10 +188,11 @@ void add_dense_linearisation(Network* network, int input_units, int output_units
|
|||||||
nn->weights[i] = (float*)malloc(sizeof(float)*output_units);
|
nn->weights[i] = (float*)malloc(sizeof(float)*output_units);
|
||||||
nn->d_weights[i] = (float*)malloc(sizeof(float)*output_units);
|
nn->d_weights[i] = (float*)malloc(sizeof(float)*output_units);
|
||||||
}
|
}
|
||||||
|
/* Not currently used
|
||||||
initialisation_1d_matrix(network->initialisation, nn->bias, output_units, output_units+input_units);
|
initialisation_1d_matrix(network->initialisation, nn->bias, output_units, output_units+input_units);
|
||||||
initialisation_1d_matrix(ZERO, nn->d_bias, output_units, output_units+input_units);
|
initialisation_1d_matrix(ZERO, nn->d_bias, output_units, output_units+input_units);
|
||||||
initialisation_2d_matrix(network->initialisation, nn->weights, input_units, output_units, output_units+input_units);
|
initialisation_2d_matrix(network->initialisation, nn->weights, input_units, output_units, output_units+input_units);
|
||||||
initialisation_2d_matrix(ZERO, nn->d_weights, input_units, output_units, output_units+input_units);
|
initialisation_2d_matrix(ZERO, nn->d_weights, input_units, output_units, output_units+input_units); */
|
||||||
create_a_line_input_layer(network, n, output_units);
|
create_a_line_input_layer(network, n, output_units);
|
||||||
|
|
||||||
network->size++;
|
network->size++;
|
||||||
|
@ -72,20 +72,38 @@ void apply_function_input(float (*f)(float), float*** input, int depth, int rows
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
void choose_apply_function_input(int activation, float*** input, int depth, int rows, int columns) {
|
void choose_apply_function_matrix(int activation, float*** input, int depth, int dim) {
|
||||||
if (activation == RELU) {
|
if (activation == RELU) {
|
||||||
apply_function_input(relu, input, depth, rows, columns);
|
apply_function_input(relu, input, depth, dim, dim);
|
||||||
}
|
}
|
||||||
else if (activation == SIGMOID) {
|
else if (activation == SIGMOID) {
|
||||||
apply_function_input(sigmoid, input, depth, rows, columns);
|
apply_function_input(sigmoid, input, depth, dim, dim);
|
||||||
}
|
}
|
||||||
else if (activation == SOFTMAX) {
|
else if (activation == SOFTMAX) {
|
||||||
apply_softmax_input(input, depth, rows, columns);
|
apply_softmax_input(input, depth, dim, dim);
|
||||||
}
|
}
|
||||||
else if (activation == TANH) {
|
else if (activation == TANH) {
|
||||||
apply_function_input(tanh_, input, depth, rows, columns);
|
apply_function_input(tanh_, input, depth, dim, dim);
|
||||||
}
|
}
|
||||||
else {
|
else {
|
||||||
printf("Erreur, fonction d'activation inconnue: %d\n", activation);
|
printf("Erreur, fonction d'activation inconnue (choose_apply_function_matrix): %d\n", activation);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void choose_apply_function_vector(int activation, float*** input, int dim) {
|
||||||
|
if (activation == RELU) {
|
||||||
|
apply_function_input(relu, input, 1, 1, dim);
|
||||||
|
}
|
||||||
|
else if (activation == SIGMOID) {
|
||||||
|
apply_function_input(sigmoid, input, 1, 1, dim);
|
||||||
|
}
|
||||||
|
else if (activation == SOFTMAX) {
|
||||||
|
apply_softmax_input(input, 1, 1, dim);
|
||||||
|
}
|
||||||
|
else if (activation == TANH) {
|
||||||
|
apply_function_input(tanh_, input, 1, 1, dim);
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
printf("Erreur, fonction d'activation inconnue (choose_apply_function_vector): %d\n", activation);
|
||||||
}
|
}
|
||||||
}
|
}
|
@ -27,17 +27,12 @@ void create_a_line_input_layer(Network* network, int pos, int dim);
|
|||||||
/*
|
/*
|
||||||
* Ajoute au réseau une couche d'average pooling valide de dimension dim*dim
|
* Ajoute au réseau une couche d'average pooling valide de dimension dim*dim
|
||||||
*/
|
*/
|
||||||
void add_2d_average_pooling(Network* network, int kernel_size);
|
void add_2d_average_pooling(Network* network, int dim_input, int dim_ouput);
|
||||||
|
|
||||||
/*
|
|
||||||
* Ajoute au réseau une couche d'average pooling valide de dimension dim*dim qui aplatit
|
|
||||||
*/
|
|
||||||
void add_average_pooling_flatten(Network* network, int kernel_size);
|
|
||||||
|
|
||||||
/*
|
/*
|
||||||
* Ajoute au réseau une couche de convolution dim*dim et initialise les kernels
|
* Ajoute au réseau une couche de convolution dim*dim et initialise les kernels
|
||||||
*/
|
*/
|
||||||
void add_convolution(Network* network, int nb_filter, int kernel_size, int activation);
|
void add_convolution(Network* network, int depth_input, int dim_input, int depth_output, int dim_output, int activation);
|
||||||
|
|
||||||
/*
|
/*
|
||||||
* Ajoute au réseau une couche dense et initialise les poids et les biais
|
* Ajoute au réseau une couche dense et initialise les poids et les biais
|
||||||
|
@ -35,9 +35,14 @@ void apply_softmax_input(float ***input, int depth, int rows, int columns);
|
|||||||
void apply_function_input(float (*f)(float), float*** input, int depth, int rows, int columns);
|
void apply_function_input(float (*f)(float), float*** input, int depth, int rows, int columns);
|
||||||
|
|
||||||
/*
|
/*
|
||||||
* Redirige vers la fonction à appliquer sur ????
|
* Redirige vers la fonction à appliquer sur une matrice
|
||||||
*/
|
*/
|
||||||
void choose_apply_function_input(int activation, float*** input, int depth, int rows, int columns);
|
void choose_apply_function_matrix(int activation, float*** input, int depth, int dim);
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Redirige vers la fonction à appliquer sur un vecteur
|
||||||
|
*/
|
||||||
|
void choose_apply_function_vector(int activation, float*** input, int dim);
|
||||||
|
|
||||||
|
|
||||||
#endif
|
#endif
|
@ -13,11 +13,6 @@ void make_convolution(float*** input, Kernel_cnn* kernel, float*** output, int o
|
|||||||
*/
|
*/
|
||||||
void make_average_pooling(float*** input, float*** output, int size, int output_depth, int output_dim);
|
void make_average_pooling(float*** input, float*** output, int size, int output_depth, int output_dim);
|
||||||
|
|
||||||
/*
|
|
||||||
* Effectue un average pooling avec stride=size et aplatissement
|
|
||||||
*/
|
|
||||||
void make_average_pooling_flattened(float*** input, float* output, int size, int input_depth, int input_dim);
|
|
||||||
|
|
||||||
/*
|
/*
|
||||||
* Effecute une full connection
|
* Effecute une full connection
|
||||||
*/
|
*/
|
||||||
|
@ -36,44 +36,40 @@ void forward_propagation(Network* network) {
|
|||||||
int n = network->size;
|
int n = network->size;
|
||||||
float*** input;
|
float*** input;
|
||||||
float*** output;
|
float*** output;
|
||||||
Kernel* k_i_1;
|
|
||||||
Kernel* k_i;
|
Kernel* k_i;
|
||||||
for (int i=0; i < n-1; i++) {
|
for (int i=0; i < n-1; i++) {
|
||||||
k_i_1 = network->kernel[i+1];
|
|
||||||
k_i = network->kernel[i];
|
k_i = network->kernel[i];
|
||||||
|
printf("\n i -> %d :: %d %d \n", i, k_i->cnn==NULL, k_i->nn==NULL);
|
||||||
input_width = network->width[i];
|
input_width = network->width[i];
|
||||||
input_depth = network->depth[i];
|
input_depth = network->depth[i];
|
||||||
output_width = network->width[i+1];
|
output_width = network->width[i+1];
|
||||||
output_depth = network->depth[i+1];
|
output_depth = network->depth[i+1];
|
||||||
activation = network->kernel[i]->activation;
|
activation = k_i->activation;
|
||||||
input = network->input[i];
|
input = network->input[i];
|
||||||
output = network->input[i+1];
|
output = network->input[i+1];
|
||||||
|
|
||||||
if (k_i_1->nn==NULL && k_i_1->cnn!=NULL) { //CNN
|
if (k_i->cnn!=NULL) { //CNN
|
||||||
printf("Convolution of cnn: %dx%d -> %dx%d\n", input_depth, input_width, output_depth, output_width);
|
printf("Convolution of cnn: %dx%dx%d -> %dx%dx%d\n", input_depth, input_width, input_width, output_depth, output_width, output_width);
|
||||||
make_convolution(input, k_i_1->cnn, output, output_width);
|
make_convolution(input, k_i->cnn, output, output_width);
|
||||||
choose_apply_function_input(activation, output, output_depth, output_width, output_width);
|
choose_apply_function_matrix(activation, output, output_depth, output_width);
|
||||||
}
|
}
|
||||||
else if (k_i_1->nn!=NULL && k_i_1->cnn==NULL) { //NN
|
else if (k_i->nn!=NULL) { //NN
|
||||||
printf("Densification of nn\n");
|
printf("Densification of nn: %dx%dx%d -> %dx%dx%d\n", input_depth, input_width, input_width, output_depth, output_width, output_width);
|
||||||
// Checked if it is a nn which linearise
|
// Checked if it is a nn which linearise
|
||||||
make_fully_connected(network->input[i][0][0], network->kernel[i]->nn, network->input[i+1][0][0], input_width, output_width);
|
make_fully_connected(network->input[i][0][0], network->kernel[i]->nn, network->input[i+1][0][0], input_width, output_width);
|
||||||
choose_apply_function_input(activation, output, 1, 1, output_width);
|
choose_apply_function_vector(activation, output, output_width);
|
||||||
}
|
}
|
||||||
else { //Pooling (Vérifier dedans) ??
|
else { //Pooling
|
||||||
if (n-2==i) {
|
if (n-2==i) {
|
||||||
printf("Le réseau ne peut pas finir par une pooling layer");
|
printf("Le réseau ne peut pas finir par une pooling layer");
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
if (1==1) { // Pooling sur une matrice
|
if (1==1) { // Pooling sur une matrice
|
||||||
printf("Average pooling\n");
|
printf("Average pooling: %dx%dx%d -> %dx%dx%d\n", input_depth, input_width, input_width, output_depth, output_width, output_width);
|
||||||
make_average_pooling(input, output, activation/100, output_depth, output_width);
|
make_average_pooling(input, output, activation/100, output_depth, output_width);
|
||||||
}
|
}
|
||||||
else if (1==0) { // Pooling sur un vecteur
|
else { // Pooling sur un vecteur
|
||||||
printf("Error: Not implemented: forward: %d\n", i);
|
printf("Erreur: le pooling ne se fait que sur une matrice \n");
|
||||||
}
|
|
||||||
else {
|
|
||||||
printf("Erreur: forward_propagation: %d -> %d %d\n", i, k_i_1->nn==NULL, k_i_1->cnn);
|
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -89,7 +85,7 @@ void backward_propagation(Network* network, float wanted_number) { // TODO
|
|||||||
if (i==n) {
|
if (i==n) {
|
||||||
if (network->kernel[i]->activation == SOFTMAX) {
|
if (network->kernel[i]->activation == SOFTMAX) {
|
||||||
int l2 = network->width[i]; // Taille de la dernière couche
|
int l2 = network->width[i]; // Taille de la dernière couche
|
||||||
int l1 = network->width[i-1];
|
//int l1 = network->width[i-1];
|
||||||
for (int j=0; j < l2; j++) {
|
for (int j=0; j < l2; j++) {
|
||||||
|
|
||||||
}
|
}
|
||||||
|
@ -4,12 +4,9 @@
|
|||||||
#include "include/make.h"
|
#include "include/make.h"
|
||||||
|
|
||||||
void make_convolution(float*** input, Kernel_cnn* kernel, float*** output, int output_dim) {
|
void make_convolution(float*** input, Kernel_cnn* kernel, float*** output, int output_dim) {
|
||||||
// TODO, MISS CONDITIONS ON THE CONVOLUTION
|
|
||||||
printf_warning("Appel de make_convolution, incomplet\n");
|
printf_warning("Appel de make_convolution, incomplet\n");
|
||||||
float f;
|
float f;
|
||||||
int n = kernel->k_size;
|
int n = kernel->k_size;
|
||||||
printf("Convolution output: %dx%dx%d, %dx%dx%d\n", kernel->columns, output_dim, output_dim, kernel->rows, n, n);
|
|
||||||
printf("BIS %d %d \n", kernel->columns, kernel->k_size);
|
|
||||||
for (int i=0; i < kernel->columns; i++) {
|
for (int i=0; i < kernel->columns; i++) {
|
||||||
for (int j=0; j < output_dim; j++) {
|
for (int j=0; j < output_dim; j++) {
|
||||||
for (int k=0; k < output_dim; k++) {
|
for (int k=0; k < output_dim; k++) {
|
||||||
@ -47,31 +44,6 @@ void make_average_pooling(float*** input, float*** output, int size, int output_
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
void make_average_pooling_flattened(float*** input, float* output, int size, int input_depth, int input_dim) {
|
|
||||||
if ((input_depth*input_dim*input_dim) % (size*size) != 0) {
|
|
||||||
printf_error("Deux layers non compatibles avec un average pooling flattened");
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
float average;
|
|
||||||
int n = size*size;
|
|
||||||
int cpt = 0;
|
|
||||||
int output_dim = input_dim - 2*(size/2);
|
|
||||||
for (int i=0; i < input_depth; i++) {
|
|
||||||
for (int j=0; j < output_dim; j++) {
|
|
||||||
for (int k=0; k < output_dim; k++) {
|
|
||||||
average = 0.;
|
|
||||||
for (int a=0; a < size; a++) {
|
|
||||||
for (int b=0; b < size; b++) {
|
|
||||||
average += input[i][2*j +a][2*k +b];
|
|
||||||
}
|
|
||||||
}
|
|
||||||
output[cpt] = average;
|
|
||||||
cpt++;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
void make_fully_connected(float* input, Kernel_nn* kernel, float* output, int size_input, int size_output) {
|
void make_fully_connected(float* input, Kernel_nn* kernel, float* output, int size_input, int size_output) {
|
||||||
float f;
|
float f;
|
||||||
for (int i=0; i < size_output; i++) {
|
for (int i=0; i < size_output; i++) {
|
||||||
|
Loading…
Reference in New Issue
Block a user