backpropagation: fix misaligned addresses

This commit is contained in:
augustin64 2023-05-20 20:15:36 +02:00
parent bed3d3123e
commit 5d306f39ee
2 changed files with 22 additions and 22 deletions

View File

@ -287,7 +287,7 @@ void backward_max_pooling(float*** input, float*** output, int input_width, int
* Backward Dense
*/
#ifdef __CUDACC__
__global__ void backward_dense_kernel_1(Kernel_nn* ker, float* input, float* output, int size_input, int size_output) {
__global__ void backward_dense_kernel_1(float** d_weights, float* d_bias, float* input, float* output, int size_input, int size_output) {
// Équivalents respectifs de i, j et k dans la boucle effectuée par le cpu
int idx = threadIdx.x + blockDim.x*blockIdx.x; // < size_input
int idy = threadIdx.y + blockDim.y*blockIdx.y; // < size_output
@ -297,9 +297,9 @@ __global__ void backward_dense_kernel_1(Kernel_nn* ker, float* input, float* out
}
if (idx == 0) {
ker->d_bias[idy] += output[idy];
d_bias[idy] += output[idy];
}
ker->d_weights[idx][idy] += input[idx]*output[idy];
d_weights[idx][idy] += input[idx]*output[idy];
}
__global__ void backward_dense_kernel_2(float** weights, float* input, float* input_z, float* output, int size_input, int size_output, funcPtr d_f) {
@ -321,7 +321,7 @@ void backward_dense_device(Kernel_nn* ker, float* input, float* input_z, float*
dim3 gridSize1(i_div_up(size_input, BLOCKSIZE_x), i_div_up(size_output, BLOCKSIZE_y));
dim3 blockSize1(BLOCKSIZE_x, BLOCKSIZE_y);
backward_dense_kernel_1<<<gridSize1, blockSize1>>>(ker, input, output, size_input, size_output);
backward_dense_kernel_1<<<gridSize1, blockSize1>>>(ker->d_weights, ker->d_bias, input, output, size_input, size_output);
gpuErrchk( cudaPeekAtLastError() );
gpuErrchk( cudaDeviceSynchronize() );
@ -387,7 +387,7 @@ void backward_dense(Kernel_nn* ker, float* input, float* input_z, float* output,
* Backward linearisation
*/
#ifdef __CUDACC__
__global__ void backward_linearisation_kernel_1(Kernel_nn* ker, float*** input, float* output, int input_depth, int input_width, int size_output) {
__global__ void backward_linearisation_kernel_1(float** d_weights, float* d_bias, float*** input, float* output, int input_depth, int input_width, int size_output) {
int idx = threadIdx.x + blockDim.x*blockIdx.x; // < input_depth
int idy = threadIdx.y + blockDim.y*blockIdx.y; // < input_width
int idz = threadIdx.z + blockDim.z*blockIdx.z; // < input_width
@ -399,16 +399,16 @@ __global__ void backward_linearisation_kernel_1(Kernel_nn* ker, float*** input,
int id = idx*input_width*input_width + idy*input_width + idz;
for (int j=0; j < size_output; j++) {
ker->d_weights[id][j] += input[idx][idy][idz]*output[j];
d_weights[id][j] += input[idx][idy][idz]*output[j];
}
if (id == 0) {
for (int j=0; j < size_output; j++) {
ker->d_bias[j] += output[j];
d_bias[j] += output[j];
}
}
}
__global__ void backward_linearisation_kernel_2(Kernel_nn* ker, float*** input, float*** input_z, float* output, int input_depth, int input_width, int size_output, funcPtr d_f) {
__global__ void backward_linearisation_kernel_2(float** weights, float*** input, float*** input_z, float* output, int input_depth, int input_width, int size_output, funcPtr d_f) {
int idx = threadIdx.x + blockDim.x*blockIdx.x; // < input_depth
int idy = threadIdx.y + blockDim.y*blockIdx.y; // < input_width
int idz = threadIdx.z + blockDim.z*blockIdx.z; // < input_width
@ -420,7 +420,7 @@ __global__ void backward_linearisation_kernel_2(Kernel_nn* ker, float*** input,
float tmp=0;
for (int j=0; j < size_output; j++) {
tmp += output[j]*ker->weights[id][j];
tmp += output[j]*weights[id][j];
}
input[idx][idy][idz] = tmp*( (*d_f)(input_z[idx][idy][idz]) );
}
@ -430,7 +430,7 @@ void backward_linearisation_device(Kernel_nn* ker, float*** input, float*** inpu
dim3 gridSize(i_div_up(input_depth, BLOCKSIZE_x), i_div_up(input_width, BLOCKSIZE_y), i_div_up(input_width, BLOCKSIZE_y));
dim3 blockSize(BLOCKSIZE_x, BLOCKSIZE_y, BLOCKSIZE_z);
backward_linearisation_kernel_1<<<gridSize, blockSize>>>(ker, input, output, input_depth, input_width, size_output);
backward_linearisation_kernel_1<<<gridSize, blockSize>>>(ker->d_weights, ker->d_bias, input, output, input_depth, input_width, size_output);
gpuErrchk( cudaPeekAtLastError() );
gpuErrchk( cudaDeviceSynchronize() );
@ -438,7 +438,7 @@ void backward_linearisation_device(Kernel_nn* ker, float*** input, float*** inpu
// Second kernel
funcPtr d_function = get_activation_function_cuda(activation);
backward_linearisation_kernel_2<<<gridSize, blockSize>>>(ker, input, input_z, output, input_depth, input_width, size_output, d_function);
backward_linearisation_kernel_2<<<gridSize, blockSize>>>(ker->weights, input, input_z, output, input_depth, input_width, size_output, d_function);
gpuErrchk( cudaPeekAtLastError() );
gpuErrchk( cudaDeviceSynchronize() );

View File

@ -287,7 +287,7 @@ void backward_max_pooling(float*** input, float*** output, int input_width, int
* Backward Dense
*/
#ifdef __CUDACC__
__global__ void backward_dense_kernel_1(Kernel_nn* ker, float* input, float* output, int size_input, int size_output) {
__global__ void backward_dense_kernel_1(float** d_weights, float* d_bias, float* input, float* output, int size_input, int size_output) {
// Équivalents respectifs de i, j et k dans la boucle effectuée par le cpu
int idx = threadIdx.x + blockDim.x*blockIdx.x; // < size_input
int idy = threadIdx.y + blockDim.y*blockIdx.y; // < size_output
@ -297,9 +297,9 @@ __global__ void backward_dense_kernel_1(Kernel_nn* ker, float* input, float* out
}
if (idx == 0) {
ker->d_bias[idy] += output[idy];
d_bias[idy] += output[idy];
}
ker->d_weights[idx][idy] += input[idx]*output[idy];
d_weights[idx][idy] += input[idx]*output[idy];
}
__global__ void backward_dense_kernel_2(float** weights, float* input, float* input_z, float* output, int size_input, int size_output, funcPtr d_f) {
@ -321,7 +321,7 @@ void backward_dense_device(Kernel_nn* ker, float* input, float* input_z, float*
dim3 gridSize1(i_div_up(size_input, BLOCKSIZE_x), i_div_up(size_output, BLOCKSIZE_y));
dim3 blockSize1(BLOCKSIZE_x, BLOCKSIZE_y);
backward_dense_kernel_1<<<gridSize1, blockSize1>>>(ker, input, output, size_input, size_output);
backward_dense_kernel_1<<<gridSize1, blockSize1>>>(ker->d_weights, ker->d_bias, input, output, size_input, size_output);
gpuErrchk( cudaPeekAtLastError() );
gpuErrchk( cudaDeviceSynchronize() );
@ -387,7 +387,7 @@ void backward_dense(Kernel_nn* ker, float* input, float* input_z, float* output,
* Backward linearisation
*/
#ifdef __CUDACC__
__global__ void backward_linearisation_kernel_1(Kernel_nn* ker, float*** input, float* output, int input_depth, int input_width, int size_output) {
__global__ void backward_linearisation_kernel_1(float** d_weights, float* d_bias, float*** input, float* output, int input_depth, int input_width, int size_output) {
int idx = threadIdx.x + blockDim.x*blockIdx.x; // < input_depth
int idy = threadIdx.y + blockDim.y*blockIdx.y; // < input_width
int idz = threadIdx.z + blockDim.z*blockIdx.z; // < input_width
@ -399,16 +399,16 @@ __global__ void backward_linearisation_kernel_1(Kernel_nn* ker, float*** input,
int id = idx*input_width*input_width + idy*input_width + idz;
for (int j=0; j < size_output; j++) {
ker->d_weights[id][j] += input[idx][idy][idz]*output[j];
d_weights[id][j] += input[idx][idy][idz]*output[j];
}
if (id == 0) {
for (int j=0; j < size_output; j++) {
ker->d_bias[j] += output[j];
d_bias[j] += output[j];
}
}
}
__global__ void backward_linearisation_kernel_2(Kernel_nn* ker, float*** input, float*** input_z, float* output, int input_depth, int input_width, int size_output, funcPtr d_f) {
__global__ void backward_linearisation_kernel_2(float** weights, float*** input, float*** input_z, float* output, int input_depth, int input_width, int size_output, funcPtr d_f) {
int idx = threadIdx.x + blockDim.x*blockIdx.x; // < input_depth
int idy = threadIdx.y + blockDim.y*blockIdx.y; // < input_width
int idz = threadIdx.z + blockDim.z*blockIdx.z; // < input_width
@ -420,7 +420,7 @@ __global__ void backward_linearisation_kernel_2(Kernel_nn* ker, float*** input,
float tmp=0;
for (int j=0; j < size_output; j++) {
tmp += output[j]*ker->weights[id][j];
tmp += output[j]*weights[id][j];
}
input[idx][idy][idz] = tmp*( (*d_f)(input_z[idx][idy][idz]) );
}
@ -430,7 +430,7 @@ void backward_linearisation_device(Kernel_nn* ker, float*** input, float*** inpu
dim3 gridSize(i_div_up(input_depth, BLOCKSIZE_x), i_div_up(input_width, BLOCKSIZE_y), i_div_up(input_width, BLOCKSIZE_y));
dim3 blockSize(BLOCKSIZE_x, BLOCKSIZE_y, BLOCKSIZE_z);
backward_linearisation_kernel_1<<<gridSize, blockSize>>>(ker, input, output, input_depth, input_width, size_output);
backward_linearisation_kernel_1<<<gridSize, blockSize>>>(ker->d_weights, ker->d_bias, input, output, input_depth, input_width, size_output);
gpuErrchk( cudaPeekAtLastError() );
gpuErrchk( cudaDeviceSynchronize() );
@ -438,7 +438,7 @@ void backward_linearisation_device(Kernel_nn* ker, float*** input, float*** inpu
// Second kernel
funcPtr d_function = get_activation_function_cuda(activation);
backward_linearisation_kernel_2<<<gridSize, blockSize>>>(ker, input, input_z, output, input_depth, input_width, size_output, d_function);
backward_linearisation_kernel_2<<<gridSize, blockSize>>>(ker->weights, input, input_z, output, input_depth, input_width, size_output, d_function);
gpuErrchk( cudaPeekAtLastError() );
gpuErrchk( cudaDeviceSynchronize() );