mirror of
https://github.com/augustin64/projet-tipe
synced 2025-01-24 07:36:24 +01:00
Update update.c
This commit is contained in:
parent
d03f7493b2
commit
5a0f807a00
@ -34,15 +34,6 @@ void drop_neurones(float*** input, int depth, int dim1, int dim2, int dropout);
|
|||||||
*/
|
*/
|
||||||
void copy_input_to_input_z(float*** output, float*** output_a, int output_depth, int output_rows, int output_columns);
|
void copy_input_to_input_z(float*** output, float*** output_a, int output_depth, int output_rows, int output_columns);
|
||||||
|
|
||||||
/*
|
|
||||||
* Bascule les données de d_weights dans weights
|
|
||||||
*/
|
|
||||||
void update_weights(Network* network);
|
|
||||||
|
|
||||||
/*
|
|
||||||
* Bascule les données de d_bias dans bias
|
|
||||||
*/
|
|
||||||
void update_bias(Network* network);
|
|
||||||
/*
|
/*
|
||||||
* Renvoie l'erreur du réseau neuronal pour une sortie (RMS)
|
* Renvoie l'erreur du réseau neuronal pour une sortie (RMS)
|
||||||
*/
|
*/
|
||||||
|
@ -7,13 +7,13 @@
|
|||||||
* Met à jours les poids à partir de données obtenus après plusieurs backpropagations
|
* Met à jours les poids à partir de données obtenus après plusieurs backpropagations
|
||||||
* Puis met à 0 tous les d_weights
|
* Puis met à 0 tous les d_weights
|
||||||
*/
|
*/
|
||||||
void update_weights(Network* network);
|
void update_weights(Network* network, Network* d_network);
|
||||||
|
|
||||||
/*
|
/*
|
||||||
* Met à jours les biais à partir de données obtenus après plusieurs backpropagations
|
* Met à jours les biais à partir de données obtenus après plusieurs backpropagations
|
||||||
* Puis met à 0 tous les d_bias
|
* Puis met à 0 tous les d_bias
|
||||||
*/
|
*/
|
||||||
void update_bias(Network* network);
|
void update_bias(Network* network, Network* d_network);
|
||||||
|
|
||||||
/*
|
/*
|
||||||
* Met à 0 toutes les données de backpropagation de poids
|
* Met à 0 toutes les données de backpropagation de poids
|
||||||
|
@ -195,10 +195,11 @@ void train(int dataset_type, char* images_file, char* labels_file, char* data_di
|
|||||||
accuracy += train_params->accuracy / (float) nb_images_total;
|
accuracy += train_params->accuracy / (float) nb_images_total;
|
||||||
current_accuracy = accuracy * nb_images_total/(j*BATCHES);
|
current_accuracy = accuracy * nb_images_total/(j*BATCHES);
|
||||||
|
|
||||||
update_weights(network);
|
update_weights(network, network);
|
||||||
update_bias(network);
|
update_bias(network, network);
|
||||||
|
|
||||||
printf("\rÉpoque [%d/%d]\tImage [%d/%d]\tAccuracy: "YELLOW"%0.1f%%"RESET" ", i, epochs, BATCHES*(j+1), nb_images_total, current_accuracy*100);
|
printf("\rÉpoque [%d/%d]\tImage [%d/%d]\tAccuracy: "YELLOW"%0.1f%%"RESET" ", i, epochs, BATCHES*(j+1), nb_images_total, current_accuracy*100);
|
||||||
|
fflush(stdout);
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
#ifdef USE_MULTITHREADING
|
#ifdef USE_MULTITHREADING
|
||||||
|
@ -1,13 +1,16 @@
|
|||||||
|
#include <stdio.h>
|
||||||
|
|
||||||
#include "include/update.h"
|
#include "include/update.h"
|
||||||
#include "include/struct.h"
|
#include "include/struct.h"
|
||||||
|
|
||||||
void update_weights(Network* network) {
|
void update_weights(Network* network, Network* d_network) {
|
||||||
int n = network->size;
|
int n = network->size;
|
||||||
int input_depth, input_width, output_depth, output_width, k_size;
|
int input_depth, input_width, output_depth, output_width, k_size;
|
||||||
Kernel* k_i;
|
Kernel* k_i;
|
||||||
|
Kernel* dk_i;
|
||||||
for (int i=0; i<(n-1); i++) {
|
for (int i=0; i<(n-1); i++) {
|
||||||
k_i = network->kernel[i];
|
k_i = network->kernel[i];
|
||||||
|
dk_i = d_network->kernel[i];
|
||||||
input_depth = network->depth[i];
|
input_depth = network->depth[i];
|
||||||
input_width = network->width[i];
|
input_width = network->width[i];
|
||||||
output_depth = network->depth[i+1];
|
output_depth = network->depth[i+1];
|
||||||
@ -15,13 +18,14 @@ void update_weights(Network* network) {
|
|||||||
|
|
||||||
if (k_i->cnn) { // Convolution
|
if (k_i->cnn) { // Convolution
|
||||||
Kernel_cnn* cnn = k_i->cnn;
|
Kernel_cnn* cnn = k_i->cnn;
|
||||||
|
Kernel_cnn* d_cnn = dk_i->cnn;
|
||||||
k_size = cnn->k_size;
|
k_size = cnn->k_size;
|
||||||
for (int a=0; a<input_depth; a++) {
|
for (int a=0; a<input_depth; a++) {
|
||||||
for (int b=0; b<output_depth; b++) {
|
for (int b=0; b<output_depth; b++) {
|
||||||
for (int c=0; c<k_size; c++) {
|
for (int c=0; c<k_size; c++) {
|
||||||
for (int d=0; d<k_size; d++) {
|
for (int d=0; d<k_size; d++) {
|
||||||
cnn->w[a][b][c][d] -= network->learning_rate * cnn->d_w[a][b][c][d];
|
cnn->w[a][b][c][d] -= network->learning_rate * d_cnn->d_w[a][b][c][d];
|
||||||
cnn->d_w[a][b][c][d] = 0;
|
d_cnn->d_w[a][b][c][d] = 0;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -29,19 +33,21 @@ void update_weights(Network* network) {
|
|||||||
} else if (k_i->nn) { // Full connection
|
} else if (k_i->nn) { // Full connection
|
||||||
if (input_depth==1) { // Vecteur -> Vecteur
|
if (input_depth==1) { // Vecteur -> Vecteur
|
||||||
Kernel_nn* nn = k_i->nn;
|
Kernel_nn* nn = k_i->nn;
|
||||||
|
Kernel_nn* d_nn = dk_i->nn;
|
||||||
for (int a=0; a<input_width; a++) {
|
for (int a=0; a<input_width; a++) {
|
||||||
for (int b=0; b<output_width; b++) {
|
for (int b=0; b<output_width; b++) {
|
||||||
nn->weights[a][b] -= network->learning_rate * nn->d_weights[a][b];
|
nn->weights[a][b] -= network->learning_rate * d_nn->d_weights[a][b];
|
||||||
nn->d_weights[a][b] = 0;
|
d_nn->d_weights[a][b] = 0;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
} else { // Matrice -> vecteur
|
} else { // Matrice -> vecteur
|
||||||
Kernel_nn* nn = k_i->nn;
|
Kernel_nn* nn = k_i->nn;
|
||||||
|
Kernel_nn* d_nn = dk_i->nn;
|
||||||
int input_size = input_width*input_width*input_depth;
|
int input_size = input_width*input_width*input_depth;
|
||||||
for (int a=0; a<input_size; a++) {
|
for (int a=0; a<input_size; a++) {
|
||||||
for (int b=0; b<output_width; b++) {
|
for (int b=0; b<output_width; b++) {
|
||||||
nn->weights[a][b] -= network->learning_rate * nn->d_weights[a][b];
|
nn->weights[a][b] -= network->learning_rate * d_nn->d_weights[a][b];
|
||||||
nn->d_weights[a][b] = 0;
|
d_nn->d_weights[a][b] = 0;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -51,30 +57,35 @@ void update_weights(Network* network) {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
void update_bias(Network* network) {
|
void update_bias(Network* network, Network* d_network) {
|
||||||
|
|
||||||
int n = network->size;
|
int n = network->size;
|
||||||
int output_width, output_depth;
|
int output_width, output_depth;
|
||||||
Kernel* k_i;
|
Kernel* k_i;
|
||||||
|
Kernel* dk_i;
|
||||||
for (int i=0; i<(n-1); i++) {
|
for (int i=0; i<(n-1); i++) {
|
||||||
k_i = network->kernel[i];
|
k_i = network->kernel[i];
|
||||||
|
dk_i = d_network->kernel[i];
|
||||||
output_width = network->width[i+1];
|
output_width = network->width[i+1];
|
||||||
output_depth = network->depth[i+1];
|
output_depth = network->depth[i+1];
|
||||||
|
|
||||||
if (k_i->cnn) { // Convolution
|
if (k_i->cnn) { // Convolution
|
||||||
Kernel_cnn* cnn = k_i->cnn;
|
Kernel_cnn* cnn = k_i->cnn;
|
||||||
|
Kernel_cnn* d_cnn = dk_i->cnn;
|
||||||
for (int a=0; a<output_depth; a++) {
|
for (int a=0; a<output_depth; a++) {
|
||||||
for (int b=0; b<output_width; b++) {
|
for (int b=0; b<output_width; b++) {
|
||||||
for (int c=0; c<output_width; c++) {
|
for (int c=0; c<output_width; c++) {
|
||||||
cnn->bias[a][b][c] -= network->learning_rate * cnn->d_bias[a][b][c];
|
cnn->bias[a][b][c] -= network->learning_rate * d_cnn->d_bias[a][b][c];
|
||||||
cnn->d_bias[a][b][c] = 0;
|
d_cnn->d_bias[a][b][c] = 0;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
} else if (k_i->nn) { // Full connection
|
} else if (k_i->nn) { // Full connection
|
||||||
Kernel_nn* nn = k_i->nn;
|
Kernel_nn* nn = k_i->nn;
|
||||||
|
Kernel_nn* d_nn = dk_i->nn;
|
||||||
for (int a=0; a<output_width; a++) {
|
for (int a=0; a<output_width; a++) {
|
||||||
nn->bias[a] -= network->learning_rate * nn->d_bias[a];
|
nn->bias[a] -= network->learning_rate * d_nn->d_bias[a];
|
||||||
nn->d_bias[a] = 0;
|
d_nn->d_bias[a] = 0;
|
||||||
}
|
}
|
||||||
} else { // Pooling
|
} else { // Pooling
|
||||||
(void)0; // Ne rien faire pour la couche pooling
|
(void)0; // Ne rien faire pour la couche pooling
|
||||||
|
Loading…
Reference in New Issue
Block a user