Simplification of names

This commit is contained in:
Julien Chemillier 2022-04-16 17:02:57 +02:00
parent 981aea8a94
commit 52999331f9

View File

@ -7,6 +7,7 @@
#include "struct/neuron.h" #include "struct/neuron.h"
#define TAUX_APPRENTISSAGE 0.15 // Définit le taux d'apprentissage du réseau neuronal, donc la rapidité d'adaptation du modèle (compris entre 0 et 1) #define TAUX_APPRENTISSAGE 0.15 // Définit le taux d'apprentissage du réseau neuronal, donc la rapidité d'adaptation du modèle (compris entre 0 et 1)
#define RAND_DOUBLE() ((double)rand())/((double)RAND_MAX)
float max(float a, float b){ float max(float a, float b){
@ -87,7 +88,7 @@ void forward_propagation(Reseau* reseau) {
couche->neurones[j]->z = couche->neurones[j]->biais; couche->neurones[j]->z = couche->neurones[j]->biais;
for (int k=0; k < pre_couche->nb_neurones; k++) { for (int k=0; k < pre_couche->nb_neurones; k++) {
couche->neurones[j]->z += pre_couche->neurones[k]->z * pre_couche->neurones[k]->poids_sortants[j]; couche->neurones[j]->z += pre_couche->neurones[k]->z * pre_couche->neurones[k]->poids_sortants[j] * pre_couche->neurones[k]->activation;
} }
if (i < reseau->nb_couches-1) { // Pour toutes les couches sauf la dernière on utilise la fonction ReLU (0 si z<0, z sinon) if (i < reseau->nb_couches-1) { // Pour toutes les couches sauf la dernière on utilise la fonction ReLU (0 si z<0, z sinon)
@ -194,6 +195,7 @@ void initialisation_du_reseau_neuronal(Reseau* reseau) {
Neurone* neurone; Neurone* neurone;
double borne_superieure; double borne_superieure;
double borne_inferieure; double borne_inferieure;
double ecart_bornes;
srand(time(0)); srand(time(0));
for (int i=0; i < reseau->nb_couches-1; i++) { // On exclut la dernière couche for (int i=0; i < reseau->nb_couches-1; i++) { // On exclut la dernière couche
@ -203,25 +205,26 @@ void initialisation_du_reseau_neuronal(Reseau* reseau) {
// Initialisation des bornes supérieure et inférieure // Initialisation des bornes supérieure et inférieure
borne_superieure = 1/sqrt(reseau->couches[i]->nb_neurones); borne_superieure = 1/sqrt(reseau->couches[i]->nb_neurones);
borne_inferieure = - borne_superieure; borne_inferieure = - borne_superieure;
ecart_bornes = borne_superieure - borne_inferieure;
neurone->activation = borne_inferieure + ((double)rand())/((double)RAND_MAX)*(borne_superieure - borne_inferieure); neurone->activation = borne_inferieure + RAND_DOUBLE()*ecart_bornes;
for (int k=0; k < reseau->couches[i+1]->nb_neurones-1; k++) { // Pour chaque neurone de la couche suivante auquel le neurone est relié for (int k=0; k < reseau->couches[i+1]->nb_neurones-1; k++) { // Pour chaque neurone de la couche suivante auquel le neurone est relié
neurone->poids_sortants[k] = borne_inferieure + ((double)rand())/((double)RAND_MAX)*(borne_superieure - borne_inferieure); // Initialisation des poids sortants aléatoirement neurone->poids_sortants[k] = borne_inferieure + RAND_DOUBLE()*ecart_bornes; // Initialisation des poids sortants aléatoirement
neurone->d_poids_sortants[k] = 0.0; // ... ???
} }
if (i > 0) {// Pour tous les neurones n'étant pas dans la première couche if (i > 0) {// Pour tous les neurones n'étant pas dans la première couche
neurone->biais = borne_inferieure + ((double)rand())/((double)RAND_MAX)*(borne_superieure - borne_inferieure); // On initialise le biais aléatoirement neurone->biais = borne_inferieure + RAND_DOUBLE()*ecart_bornes; // On initialise le biais aléatoirement
} }
} }
} }
borne_superieure = 1/sqrt(reseau->couches[reseau->nb_couches-1]->nb_neurones); borne_superieure = 1/sqrt(reseau->couches[reseau->nb_couches-1]->nb_neurones);
borne_inferieure = - borne_superieure; borne_inferieure = - borne_superieure;
ecart_bornes = borne_superieure - borne_inferieure;;
for (int j=0; j < reseau->couches[reseau->nb_couches-1]->nb_neurones; j++) {// Intialisation de la dernière couche exclue ci-dessus for (int j=0; j < reseau->couches[reseau->nb_couches-1]->nb_neurones; j++) {// Intialisation de la dernière couche exclue ci-dessus
neurone = reseau->couches[reseau->nb_couches-1]->neurones[j]; neurone = reseau->couches[reseau->nb_couches-1]->neurones[j];
neurone->activation = borne_inferieure + ((double)rand())/((double)RAND_MAX)*(borne_superieure - borne_inferieure); neurone->activation = borne_inferieure + RAND_DOUBLE()*ecart_bornes;
neurone->biais = borne_inferieure + ((double)rand())/((double)RAND_MAX)*(borne_superieure - borne_inferieure); // On initialise le biais aléatoirement neurone->biais = borne_inferieure + RAND_DOUBLE()*ecart_bornes; // On initialise le biais aléatoirement
} }
} }