mirror of
https://github.com/augustin64/projet-tipe
synced 2025-01-23 23:26:25 +01:00
Learning_rate is a (NON NULL) float
This commit is contained in:
parent
d728530d1a
commit
50af676027
@ -6,7 +6,7 @@
|
||||
|
||||
#include "include/creation.h"
|
||||
|
||||
Network* create_network(int max_size, int learning_rate, int dropout, int initialisation, int input_dim, int input_depth) {
|
||||
Network* create_network(int max_size, float learning_rate, int dropout, int initialisation, int input_dim, int input_depth) {
|
||||
if (dropout < 0 || dropout > 100) {
|
||||
printf("Erreur, la probabilité de dropout n'est pas respecté, elle doit être comprise entre 0 et 100\n");
|
||||
}
|
||||
@ -33,7 +33,7 @@ Network* create_network(int max_size, int learning_rate, int dropout, int initia
|
||||
return network;
|
||||
}
|
||||
|
||||
Network* create_network_lenet5(int learning_rate, int dropout, int activation, int initialisation, int input_dim, int input_depth) {
|
||||
Network* create_network_lenet5(float learning_rate, int dropout, int activation, int initialisation, int input_dim, int input_depth) {
|
||||
Network* network = create_network(8, learning_rate, dropout, initialisation, input_dim, input_depth);
|
||||
network->kernel[0]->activation = activation;
|
||||
network->kernel[0]->linearisation = 0;
|
||||
|
@ -7,12 +7,12 @@
|
||||
/*
|
||||
* Créé un réseau qui peut contenir max_size couche (dont celle d'input et d'output)
|
||||
*/
|
||||
Network* create_network(int max_size, int learning_rate, int dropout, int initialisation, int input_dim, int input_depth);
|
||||
Network* create_network(int max_size, float learning_rate, int dropout, int initialisation, int input_dim, int input_depth);
|
||||
|
||||
/*
|
||||
* Renvoie un réseau suivant l'architecture LeNet5
|
||||
*/
|
||||
Network* create_network_lenet5(int learning_rate, int dropout, int activation, int initialisation, int input_dim, int input_depth);
|
||||
Network* create_network_lenet5(float learning_rate, int dropout, int activation, int initialisation, int input_dim, int input_depth);
|
||||
|
||||
/*
|
||||
* Créé et alloue de la mémoire à une couche de type input cube
|
||||
|
@ -30,7 +30,7 @@ typedef struct Kernel {
|
||||
|
||||
typedef struct Network{
|
||||
int dropout; // Contient la probabilité d'abandon d'un neurone dans [0, 100] (entiers)
|
||||
int learning_rate; // Taux d'apprentissage du réseau
|
||||
float learning_rate; // Taux d'apprentissage du réseau
|
||||
int initialisation; // Contient le type d'initialisation
|
||||
int max_size; // Taille du tableau contenant le réseau
|
||||
int size; // Taille actuelle du réseau (size ≤ max_size)
|
||||
|
@ -105,7 +105,7 @@ void train(int dataset_type, char* images_file, char* labels_file, char* data_di
|
||||
}
|
||||
|
||||
// Initialisation du réseau
|
||||
Network* network = create_network_lenet5(0, 0, TANH, GLOROT, input_dim, input_depth);
|
||||
Network* network = create_network_lenet5(0.01, 0, TANH, GLOROT, input_dim, input_depth);
|
||||
|
||||
#ifdef USE_MULTITHREADING
|
||||
int nb_remaining_images; // Nombre d'images restantes à lancer pour une série de threads
|
||||
|
@ -20,7 +20,7 @@ void update_weights(Network* network) {
|
||||
for (int b=0; b<output_depth; b++) {
|
||||
for (int c=0; c<k_size; c++) {
|
||||
for (int d=0; d<k_size; d++) {
|
||||
cnn->w[a][b][c][d] += network->learning_rate * cnn->d_w[a][b][c][d];
|
||||
cnn->w[a][b][c][d] -= network->learning_rate * cnn->d_w[a][b][c][d];
|
||||
cnn->d_w[a][b][c][d] = 0;
|
||||
}
|
||||
}
|
||||
@ -31,7 +31,7 @@ void update_weights(Network* network) {
|
||||
Kernel_nn* nn = k_i->nn;
|
||||
for (int a=0; a<input_width; a++) {
|
||||
for (int b=0; b<output_width; b++) {
|
||||
nn->weights[a][b] += network->learning_rate * nn->d_weights[a][b];
|
||||
nn->weights[a][b] -= network->learning_rate * nn->d_weights[a][b];
|
||||
nn->d_weights[a][b] = 0;
|
||||
}
|
||||
}
|
||||
@ -40,7 +40,7 @@ void update_weights(Network* network) {
|
||||
int input_size = input_width*input_width*input_depth;
|
||||
for (int a=0; a<input_size; a++) {
|
||||
for (int b=0; b<output_width; b++) {
|
||||
nn->weights[a][b] += network->learning_rate * nn->d_weights[a][b];
|
||||
nn->weights[a][b] -= network->learning_rate * nn->d_weights[a][b];
|
||||
nn->d_weights[a][b] = 0;
|
||||
}
|
||||
}
|
||||
@ -65,7 +65,7 @@ void update_bias(Network* network) {
|
||||
for (int a=0; a<output_depth; a++) {
|
||||
for (int b=0; b<output_width; b++) {
|
||||
for (int c=0; c<output_width; c++) {
|
||||
cnn->bias[a][b][c] += network->learning_rate * cnn->d_bias[a][b][c];
|
||||
cnn->bias[a][b][c] -= network->learning_rate * cnn->d_bias[a][b][c];
|
||||
cnn->d_bias[a][b][c] = 0;
|
||||
}
|
||||
}
|
||||
@ -73,7 +73,7 @@ void update_bias(Network* network) {
|
||||
} else if (k_i->nn) { // Full connection
|
||||
Kernel_nn* nn = k_i->nn;
|
||||
for (int a=0; a<output_width; a++) {
|
||||
nn->bias[a] += network->learning_rate * nn->d_bias[a];
|
||||
nn->bias[a] -= network->learning_rate * nn->d_bias[a];
|
||||
nn->d_bias[a] = 0;
|
||||
}
|
||||
} else { // Pooling
|
||||
|
Loading…
Reference in New Issue
Block a user