diff --git a/src/cnn/models.c b/src/cnn/models.c index 00613b0..8061a0e 100644 --- a/src/cnn/models.c +++ b/src/cnn/models.c @@ -36,33 +36,32 @@ Network* create_network_alexnet(float learning_rate, int dropout, int activation } Network* create_network_VGG16(float learning_rate, int dropout, int activation, int initialisation, int size_output) { - Network* network = create_network(23, learning_rate, dropout, initialisation, 256, 3); - add_convolution(network, 3, 64, 1, 0, activation); // Conv3-64 - add_convolution(network, 3, 64, 1, 0, activation); // Conv3-64 + Network* network = create_network(22, learning_rate, dropout, initialisation, 256, 3); + add_convolution(network, 3, 64, 1, 1, activation); // Conv3-64 + add_convolution(network, 3, 64, 1, 1, activation); // Conv3-64 add_average_pooling(network, 2, 2, 0); // Max Pool - add_convolution(network, 3, 128, 1, 0, activation); // Conv3-128 + add_convolution(network, 3, 128, 1, 1, activation); // Conv3-128 add_convolution(network, 1, 128, 1, 0, activation); // Conv1-128 add_average_pooling(network, 2, 2, 0); // Max Pool - add_convolution(network, 3, 256, 1, 0, activation); // Conv3-256 - add_convolution(network, 3, 256, 1, 0, activation); // Conv3-256 + add_convolution(network, 3, 256, 1, 1, activation); // Conv3-256 + add_convolution(network, 3, 256, 1, 1, activation); // Conv3-256 add_convolution(network, 1, 256, 1, 0, activation); // Conv1-256 add_average_pooling(network, 2, 2, 0); // Max Pool - add_convolution(network, 3, 512, 1, 0, activation); // Conv3-512 - add_convolution(network, 3, 512, 1, 0, activation); // Conv3-512 + add_convolution(network, 3, 512, 1, 1, activation); // Conv3-512 + add_convolution(network, 3, 512, 1, 1, activation); // Conv3-512 add_convolution(network, 1, 512, 1, 0, activation); // Conv1-512 add_average_pooling(network, 2, 2, 0); // Max Pool - add_convolution(network, 3, 512, 1, 0, activation); // Conv3-512 - add_convolution(network, 3, 512, 1, 0, activation); // Conv3-512 + add_convolution(network, 3, 512, 1, 1, activation); // Conv3-512 + add_convolution(network, 3, 512, 1, 1, activation); // Conv3-512 add_convolution(network, 1, 512, 1, 0, activation); // Conv1-512 add_average_pooling(network, 2, 2, 0); // Max Pool - add_dense_linearisation(network, 2048, activation); - add_dense(network, 2048, activation); - add_dense(network, 256, activation); + add_dense_linearisation(network, 4096, activation); + add_dense(network, 4096, activation); add_dense(network, size_output, SOFTMAX); return network; }