mirror of
https://github.com/augustin64/projet-tipe
synced 2025-01-23 15:16:26 +01:00
Split creation.c & create models.c
This commit is contained in:
parent
13e786d34b
commit
491013713d
@ -34,73 +34,6 @@ Network* create_network(int max_size, float learning_rate, int dropout, int init
|
|||||||
return network;
|
return network;
|
||||||
}
|
}
|
||||||
|
|
||||||
Network* create_network_lenet5(float learning_rate, int dropout, int activation, int initialisation, int input_width, int input_depth) {
|
|
||||||
Network* network = create_network(8, learning_rate, dropout, initialisation, input_width, input_depth);
|
|
||||||
add_convolution(network, 5, 6, 1, 0, activation);
|
|
||||||
add_average_pooling(network, 2, 2, 0);
|
|
||||||
add_convolution(network, 5, 16, 1, 0, activation);
|
|
||||||
add_average_pooling(network, 2, 2, 0);
|
|
||||||
add_dense_linearisation(network, 120, activation);
|
|
||||||
add_dense(network, 84, activation);
|
|
||||||
add_dense(network, 10, SOFTMAX);
|
|
||||||
return network;
|
|
||||||
}
|
|
||||||
|
|
||||||
Network* create_network_alexnet(float learning_rate, int dropout, int activation, int initialisation, int size_output) {
|
|
||||||
Network* network = create_network(12, learning_rate, dropout, initialisation, 227, 3);
|
|
||||||
add_convolution(network, 11, 96, 4, 0, activation);
|
|
||||||
add_average_pooling(network, 3, 2, 0);
|
|
||||||
add_convolution(network, 5, 256, 1, 2, activation);
|
|
||||||
add_average_pooling(network, 3, 2, 0);
|
|
||||||
add_convolution(network, 3, 384, 1, 1, activation);
|
|
||||||
add_convolution(network, 3, 384, 1, 1, activation);
|
|
||||||
add_convolution(network, 3, 256, 1, 1, activation);
|
|
||||||
add_average_pooling(network, 3, 2, 0);
|
|
||||||
add_dense_linearisation(network, 4096, activation);
|
|
||||||
add_dense(network, 4096, activation);
|
|
||||||
add_dense(network, size_output, SOFTMAX);
|
|
||||||
return network;
|
|
||||||
}
|
|
||||||
|
|
||||||
Network* create_network_VGG16(float learning_rate, int dropout, int activation, int initialisation, int size_output) {
|
|
||||||
Network* network = create_network(23, learning_rate, dropout, initialisation, 256, 3);
|
|
||||||
add_convolution(network, 3, 64, 1, 0, activation); // Conv3-64
|
|
||||||
add_convolution(network, 3, 64, 1, 0, activation); // Conv3-64
|
|
||||||
add_average_pooling(network, 2, 2, 0); // Max Pool
|
|
||||||
|
|
||||||
add_convolution(network, 3, 128, 1, 0, activation); // Conv3-128
|
|
||||||
add_convolution(network, 1, 128, 1, 0, activation); // Conv1-128
|
|
||||||
add_average_pooling(network, 2, 2, 0); // Max Pool
|
|
||||||
|
|
||||||
add_convolution(network, 3, 256, 1, 0, activation); // Conv3-256
|
|
||||||
add_convolution(network, 3, 256, 1, 0, activation); // Conv3-256
|
|
||||||
add_convolution(network, 1, 256, 1, 0, activation); // Conv1-256
|
|
||||||
add_average_pooling(network, 2, 2, 0); // Max Pool
|
|
||||||
|
|
||||||
add_convolution(network, 3, 512, 1, 0, activation); // Conv3-512
|
|
||||||
add_convolution(network, 3, 512, 1, 0, activation); // Conv3-512
|
|
||||||
add_convolution(network, 1, 512, 1, 0, activation); // Conv1-512
|
|
||||||
add_average_pooling(network, 2, 2, 0); // Max Pool
|
|
||||||
|
|
||||||
add_convolution(network, 3, 512, 1, 0, activation); // Conv3-512
|
|
||||||
add_convolution(network, 3, 512, 1, 0, activation); // Conv3-512
|
|
||||||
add_convolution(network, 1, 512, 1, 0, activation); // Conv1-512
|
|
||||||
add_average_pooling(network, 2, 2, 0); // Max Pool
|
|
||||||
|
|
||||||
add_dense_linearisation(network, 2048, activation);
|
|
||||||
add_dense(network, 2048, activation);
|
|
||||||
add_dense(network, 256, activation);
|
|
||||||
add_dense(network, size_output, SOFTMAX);
|
|
||||||
return network;
|
|
||||||
}
|
|
||||||
|
|
||||||
Network* create_simple_one(float learning_rate, int dropout, int activation, int initialisation, int input_width, int input_depth) {
|
|
||||||
Network* network = create_network(3, learning_rate, dropout, initialisation, input_width, input_depth);
|
|
||||||
add_dense_linearisation(network, 80, activation);
|
|
||||||
add_dense(network, 10, SOFTMAX);
|
|
||||||
return network;
|
|
||||||
}
|
|
||||||
|
|
||||||
void create_a_cube_input_layer(Network* network, int pos, int depth, int dim) {
|
void create_a_cube_input_layer(Network* network, int pos, int depth, int dim) {
|
||||||
network->input[pos] = (float***)nalloc(depth, sizeof(float**));
|
network->input[pos] = (float***)nalloc(depth, sizeof(float**));
|
||||||
for (int i=0; i < depth; i++) {
|
for (int i=0; i < depth; i++) {
|
||||||
|
@ -9,28 +9,6 @@
|
|||||||
*/
|
*/
|
||||||
Network* create_network(int max_size, float learning_rate, int dropout, int initialisation, int input_width, int input_depth);
|
Network* create_network(int max_size, float learning_rate, int dropout, int initialisation, int input_width, int input_depth);
|
||||||
|
|
||||||
/*
|
|
||||||
* Renvoie un réseau suivant l'architecture LeNet5
|
|
||||||
*/
|
|
||||||
Network* create_network_lenet5(float learning_rate, int dropout, int activation, int initialisation, int input_width, int input_depth);
|
|
||||||
|
|
||||||
/*
|
|
||||||
* Renvoie un réseau suivant l'architecture AlexNet
|
|
||||||
* C'est à dire en entrée 3x227x227 et une sortie de taille 'size_output'
|
|
||||||
*/
|
|
||||||
Network* create_network_alexnet(float learning_rate, int dropout, int activation, int initialisation, int size_output);
|
|
||||||
|
|
||||||
/*
|
|
||||||
* Renvoie un réseau suivant l'architecture VGG16 modifiée pour prendre en entrée 3x256x256
|
|
||||||
* et une sortie de taille 'size_output'
|
|
||||||
*/
|
|
||||||
Network* create_network_VGG16(float learning_rate, int dropout, int activation, int initialisation, int size_output);
|
|
||||||
|
|
||||||
/*
|
|
||||||
* Renvoie un réseau sans convolution, similaire à celui utilisé dans src/dense
|
|
||||||
*/
|
|
||||||
Network* create_simple_one(float learning_rate, int dropout, int activation, int initialisation, int input_width, int input_depth);
|
|
||||||
|
|
||||||
/*
|
/*
|
||||||
* Créé et alloue de la mémoire à une couche de type input cube
|
* Créé et alloue de la mémoire à une couche de type input cube
|
||||||
*/
|
*/
|
||||||
|
29
src/cnn/include/models.h
Normal file
29
src/cnn/include/models.h
Normal file
@ -0,0 +1,29 @@
|
|||||||
|
#include <stdlib.h>
|
||||||
|
#include <stdio.h>
|
||||||
|
|
||||||
|
#include "struct.h"
|
||||||
|
|
||||||
|
#ifndef DEF_MODELS_H
|
||||||
|
#define DEF_MODELS_H
|
||||||
|
/*
|
||||||
|
* Renvoie un réseau suivant l'architecture LeNet5
|
||||||
|
*/
|
||||||
|
Network* create_network_lenet5(float learning_rate, int dropout, int activation, int initialisation, int input_width, int input_depth);
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Renvoie un réseau suivant l'architecture AlexNet
|
||||||
|
* C'est à dire en entrée 3x227x227 et une sortie de taille 'size_output'
|
||||||
|
*/
|
||||||
|
Network* create_network_alexnet(float learning_rate, int dropout, int activation, int initialisation, int size_output);
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Renvoie un réseau suivant l'architecture VGG16 modifiée pour prendre en entrée 3x256x256
|
||||||
|
* et une sortie de taille 'size_output'
|
||||||
|
*/
|
||||||
|
Network* create_network_VGG16(float learning_rate, int dropout, int activation, int initialisation, int size_output);
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Renvoie un réseau sans convolution, similaire à celui utilisé dans src/dense
|
||||||
|
*/
|
||||||
|
Network* create_simple_one(float learning_rate, int dropout, int activation, int initialisation, int input_width, int input_depth);
|
||||||
|
#endif
|
75
src/cnn/models.c
Normal file
75
src/cnn/models.c
Normal file
@ -0,0 +1,75 @@
|
|||||||
|
#include <stdlib.h>
|
||||||
|
#include <stdio.h>
|
||||||
|
|
||||||
|
#include "include/creation.h"
|
||||||
|
#include "include/function.h"
|
||||||
|
#include "include/struct.h"
|
||||||
|
|
||||||
|
#include "include/models.h"
|
||||||
|
|
||||||
|
Network* create_network_lenet5(float learning_rate, int dropout, int activation, int initialisation, int input_width, int input_depth) {
|
||||||
|
Network* network = create_network(8, learning_rate, dropout, initialisation, input_width, input_depth);
|
||||||
|
add_convolution(network, 5, 6, 1, 0, activation);
|
||||||
|
add_average_pooling(network, 2, 2, 0);
|
||||||
|
add_convolution(network, 5, 16, 1, 0, activation);
|
||||||
|
add_average_pooling(network, 2, 2, 0);
|
||||||
|
add_dense_linearisation(network, 120, activation);
|
||||||
|
add_dense(network, 84, activation);
|
||||||
|
add_dense(network, 10, SOFTMAX);
|
||||||
|
return network;
|
||||||
|
}
|
||||||
|
|
||||||
|
Network* create_network_alexnet(float learning_rate, int dropout, int activation, int initialisation, int size_output) {
|
||||||
|
Network* network = create_network(12, learning_rate, dropout, initialisation, 227, 3);
|
||||||
|
add_convolution(network, 11, 96, 4, 0, activation);
|
||||||
|
add_average_pooling(network, 3, 2, 0);
|
||||||
|
add_convolution(network, 5, 256, 1, 2, activation);
|
||||||
|
add_average_pooling(network, 3, 2, 0);
|
||||||
|
add_convolution(network, 3, 384, 1, 1, activation);
|
||||||
|
add_convolution(network, 3, 384, 1, 1, activation);
|
||||||
|
add_convolution(network, 3, 256, 1, 1, activation);
|
||||||
|
add_average_pooling(network, 3, 2, 0);
|
||||||
|
add_dense_linearisation(network, 4096, activation);
|
||||||
|
add_dense(network, 4096, activation);
|
||||||
|
add_dense(network, size_output, SOFTMAX);
|
||||||
|
return network;
|
||||||
|
}
|
||||||
|
|
||||||
|
Network* create_network_VGG16(float learning_rate, int dropout, int activation, int initialisation, int size_output) {
|
||||||
|
Network* network = create_network(23, learning_rate, dropout, initialisation, 256, 3);
|
||||||
|
add_convolution(network, 3, 64, 1, 0, activation); // Conv3-64
|
||||||
|
add_convolution(network, 3, 64, 1, 0, activation); // Conv3-64
|
||||||
|
add_average_pooling(network, 2, 2, 0); // Max Pool
|
||||||
|
|
||||||
|
add_convolution(network, 3, 128, 1, 0, activation); // Conv3-128
|
||||||
|
add_convolution(network, 1, 128, 1, 0, activation); // Conv1-128
|
||||||
|
add_average_pooling(network, 2, 2, 0); // Max Pool
|
||||||
|
|
||||||
|
add_convolution(network, 3, 256, 1, 0, activation); // Conv3-256
|
||||||
|
add_convolution(network, 3, 256, 1, 0, activation); // Conv3-256
|
||||||
|
add_convolution(network, 1, 256, 1, 0, activation); // Conv1-256
|
||||||
|
add_average_pooling(network, 2, 2, 0); // Max Pool
|
||||||
|
|
||||||
|
add_convolution(network, 3, 512, 1, 0, activation); // Conv3-512
|
||||||
|
add_convolution(network, 3, 512, 1, 0, activation); // Conv3-512
|
||||||
|
add_convolution(network, 1, 512, 1, 0, activation); // Conv1-512
|
||||||
|
add_average_pooling(network, 2, 2, 0); // Max Pool
|
||||||
|
|
||||||
|
add_convolution(network, 3, 512, 1, 0, activation); // Conv3-512
|
||||||
|
add_convolution(network, 3, 512, 1, 0, activation); // Conv3-512
|
||||||
|
add_convolution(network, 1, 512, 1, 0, activation); // Conv1-512
|
||||||
|
add_average_pooling(network, 2, 2, 0); // Max Pool
|
||||||
|
|
||||||
|
add_dense_linearisation(network, 2048, activation);
|
||||||
|
add_dense(network, 2048, activation);
|
||||||
|
add_dense(network, 256, activation);
|
||||||
|
add_dense(network, size_output, SOFTMAX);
|
||||||
|
return network;
|
||||||
|
}
|
||||||
|
|
||||||
|
Network* create_simple_one(float learning_rate, int dropout, int activation, int initialisation, int input_width, int input_depth) {
|
||||||
|
Network* network = create_network(3, learning_rate, dropout, initialisation, input_width, input_depth);
|
||||||
|
add_dense_linearisation(network, 80, activation);
|
||||||
|
add_dense(network, 10, SOFTMAX);
|
||||||
|
return network;
|
||||||
|
}
|
Loading…
Reference in New Issue
Block a user