diff --git a/src/cnn/backpropagation.c b/src/cnn/backpropagation.c index c321538..df73056 100644 --- a/src/cnn/backpropagation.c +++ b/src/cnn/backpropagation.c @@ -416,7 +416,7 @@ __global__ void backward_linearisation_kernel_2(Kernel_nn* ker, float*** input, if (idx >= input_depth || idy >= input_width || idz >= input_width) { return; } - int id = idx*input_width*input_width + idy*input_width + idz; + int id = (idx*input_width+idy)*input_width + idz; float tmp=0; for (int j=0; j < size_output; j++) { @@ -498,7 +498,7 @@ void backward_linearisation(Kernel_nn* ker, float*** input, float*** input_z, fl * Backward convolution */ #ifdef __CUDACC__ -__global__ void backward_convolution_dbias_kernel(Kernel_cnn* ker, float*** output, int output_depth, int output_width) { +__global__ void backward_convolution_dbias_kernel(float*** d_bias, float*** output, int output_depth, int output_width) { int idx = threadIdx.x + blockDim.x*blockIdx.x; int idy = threadIdx.y + blockDim.y*blockIdx.y; int idz = threadIdx.z + blockDim.z*blockIdx.z; @@ -506,10 +506,10 @@ __global__ void backward_convolution_dbias_kernel(Kernel_cnn* ker, float*** outp if (idx >= output_depth || idy >= output_width || idz >= output_width) { return; } - ker->d_bias[idx][idy][idz] += output[idx][idy][idz]; + d_bias[idx][idy][idz] += output[idx][idy][idz]; } -__global__ void backward_convolution_dweight_kernel(Kernel_cnn* ker, float*** input, float*** output, int input_depth, int output_depth, int output_width, int kernel_size) { +__global__ void backward_convolution_dweight_kernel(float**** d_weights, float*** input, float*** output, int input_depth, int output_depth, int output_width, int kernel_size) { int idx = threadIdx.x + blockDim.x*blockIdx.x; int idy = threadIdx.y + blockDim.y*blockIdx.y; int idz = threadIdx.z + blockDim.z*blockIdx.z; @@ -527,10 +527,10 @@ __global__ void backward_convolution_dweight_kernel(Kernel_cnn* ker, float*** in tmp += input[idx][l+idz1][m+idz2]*output[idy][l][m]; } } - ker->d_weights[idx][idy][idz1][idz2] += tmp; + d_weights[idx][idy][idz1][idz2] += tmp; } -__global__ void backward_convolution_propagate_kernel(Kernel_cnn* ker, float*** input, float*** input_z, float*** output, int input_depth, int input_width, int output_depth, int k_size, funcPtr d_f) { +__global__ void backward_convolution_propagate_kernel(float**** weights, float*** input, float*** input_z, float*** output, int input_depth, int input_width, int output_depth, int k_size, funcPtr d_f) { int idx = threadIdx.x + blockDim.x*blockIdx.x; int idy = threadIdx.y + blockDim.y*blockIdx.y; int idz = threadIdx.z + blockDim.z*blockIdx.z; @@ -548,7 +548,7 @@ __global__ void backward_convolution_propagate_kernel(Kernel_cnn* ker, float*** max_n = min(k_size, input_width-idz); for (int m=min_m; m < max_m; m++) { for (int n=min_n; n < max_n; n++) { - tmp += output[l][idy-k_size+m+1][idz-k_size+n+1]*ker->weights[idx][l][m][n]; + tmp += output[l][idy-k_size+m+1][idz-k_size+n+1]*weights[idx][l][m][n]; } } } @@ -560,7 +560,7 @@ void backward_convolution_device(Kernel_cnn* kernel, float*** input, float*** in dim3 gridSize1(i_div_up(output_depth, BLOCKSIZE_x), i_div_up(output_width, BLOCKSIZE_y), i_div_up(output_width, BLOCKSIZE_y)); dim3 blockSize1(BLOCKSIZE_x, BLOCKSIZE_y, BLOCKSIZE_z); - backward_convolution_dbias_kernel<<>>(kernel, output, output_depth, output_width); + backward_convolution_dbias_kernel<<>>(kernel->d_bias, output, output_depth, output_width); gpuErrchk( cudaPeekAtLastError() ); gpuErrchk( cudaDeviceSynchronize() ); @@ -568,7 +568,7 @@ void backward_convolution_device(Kernel_cnn* kernel, float*** input, float*** in dim3 gridSize2(i_div_up(input_depth, BLOCKSIZE_x), i_div_up(output_depth, BLOCKSIZE_y), i_div_up(kernel_size*kernel_size, BLOCKSIZE_y)); dim3 blockSize2(BLOCKSIZE_x, BLOCKSIZE_y, BLOCKSIZE_z); - backward_convolution_dweight_kernel<<>>(kernel, input, output, input_depth, output_depth, output_width, kernel_size); + backward_convolution_dweight_kernel<<>>(kernel->d_weights, input, output, input_depth, output_depth, output_width, kernel_size); gpuErrchk( cudaPeekAtLastError() ); gpuErrchk( cudaDeviceSynchronize() ); @@ -580,7 +580,7 @@ void backward_convolution_device(Kernel_cnn* kernel, float*** input, float*** in funcPtr d_function = get_activation_function_cuda(activation); - backward_convolution_propagate_kernel<<>>(kernel, input, input_z, output, input_depth, input_width, output_depth, kernel_size, d_function); + backward_convolution_propagate_kernel<<>>(kernel->weights, input, input_z, output, input_depth, input_width, output_depth, kernel_size, d_function); gpuErrchk( cudaPeekAtLastError() ); gpuErrchk( cudaDeviceSynchronize() ); diff --git a/src/cnn/backpropagation.cu b/src/cnn/backpropagation.cu index c321538..df73056 100644 --- a/src/cnn/backpropagation.cu +++ b/src/cnn/backpropagation.cu @@ -416,7 +416,7 @@ __global__ void backward_linearisation_kernel_2(Kernel_nn* ker, float*** input, if (idx >= input_depth || idy >= input_width || idz >= input_width) { return; } - int id = idx*input_width*input_width + idy*input_width + idz; + int id = (idx*input_width+idy)*input_width + idz; float tmp=0; for (int j=0; j < size_output; j++) { @@ -498,7 +498,7 @@ void backward_linearisation(Kernel_nn* ker, float*** input, float*** input_z, fl * Backward convolution */ #ifdef __CUDACC__ -__global__ void backward_convolution_dbias_kernel(Kernel_cnn* ker, float*** output, int output_depth, int output_width) { +__global__ void backward_convolution_dbias_kernel(float*** d_bias, float*** output, int output_depth, int output_width) { int idx = threadIdx.x + blockDim.x*blockIdx.x; int idy = threadIdx.y + blockDim.y*blockIdx.y; int idz = threadIdx.z + blockDim.z*blockIdx.z; @@ -506,10 +506,10 @@ __global__ void backward_convolution_dbias_kernel(Kernel_cnn* ker, float*** outp if (idx >= output_depth || idy >= output_width || idz >= output_width) { return; } - ker->d_bias[idx][idy][idz] += output[idx][idy][idz]; + d_bias[idx][idy][idz] += output[idx][idy][idz]; } -__global__ void backward_convolution_dweight_kernel(Kernel_cnn* ker, float*** input, float*** output, int input_depth, int output_depth, int output_width, int kernel_size) { +__global__ void backward_convolution_dweight_kernel(float**** d_weights, float*** input, float*** output, int input_depth, int output_depth, int output_width, int kernel_size) { int idx = threadIdx.x + blockDim.x*blockIdx.x; int idy = threadIdx.y + blockDim.y*blockIdx.y; int idz = threadIdx.z + blockDim.z*blockIdx.z; @@ -527,10 +527,10 @@ __global__ void backward_convolution_dweight_kernel(Kernel_cnn* ker, float*** in tmp += input[idx][l+idz1][m+idz2]*output[idy][l][m]; } } - ker->d_weights[idx][idy][idz1][idz2] += tmp; + d_weights[idx][idy][idz1][idz2] += tmp; } -__global__ void backward_convolution_propagate_kernel(Kernel_cnn* ker, float*** input, float*** input_z, float*** output, int input_depth, int input_width, int output_depth, int k_size, funcPtr d_f) { +__global__ void backward_convolution_propagate_kernel(float**** weights, float*** input, float*** input_z, float*** output, int input_depth, int input_width, int output_depth, int k_size, funcPtr d_f) { int idx = threadIdx.x + blockDim.x*blockIdx.x; int idy = threadIdx.y + blockDim.y*blockIdx.y; int idz = threadIdx.z + blockDim.z*blockIdx.z; @@ -548,7 +548,7 @@ __global__ void backward_convolution_propagate_kernel(Kernel_cnn* ker, float*** max_n = min(k_size, input_width-idz); for (int m=min_m; m < max_m; m++) { for (int n=min_n; n < max_n; n++) { - tmp += output[l][idy-k_size+m+1][idz-k_size+n+1]*ker->weights[idx][l][m][n]; + tmp += output[l][idy-k_size+m+1][idz-k_size+n+1]*weights[idx][l][m][n]; } } } @@ -560,7 +560,7 @@ void backward_convolution_device(Kernel_cnn* kernel, float*** input, float*** in dim3 gridSize1(i_div_up(output_depth, BLOCKSIZE_x), i_div_up(output_width, BLOCKSIZE_y), i_div_up(output_width, BLOCKSIZE_y)); dim3 blockSize1(BLOCKSIZE_x, BLOCKSIZE_y, BLOCKSIZE_z); - backward_convolution_dbias_kernel<<>>(kernel, output, output_depth, output_width); + backward_convolution_dbias_kernel<<>>(kernel->d_bias, output, output_depth, output_width); gpuErrchk( cudaPeekAtLastError() ); gpuErrchk( cudaDeviceSynchronize() ); @@ -568,7 +568,7 @@ void backward_convolution_device(Kernel_cnn* kernel, float*** input, float*** in dim3 gridSize2(i_div_up(input_depth, BLOCKSIZE_x), i_div_up(output_depth, BLOCKSIZE_y), i_div_up(kernel_size*kernel_size, BLOCKSIZE_y)); dim3 blockSize2(BLOCKSIZE_x, BLOCKSIZE_y, BLOCKSIZE_z); - backward_convolution_dweight_kernel<<>>(kernel, input, output, input_depth, output_depth, output_width, kernel_size); + backward_convolution_dweight_kernel<<>>(kernel->d_weights, input, output, input_depth, output_depth, output_width, kernel_size); gpuErrchk( cudaPeekAtLastError() ); gpuErrchk( cudaDeviceSynchronize() ); @@ -580,7 +580,7 @@ void backward_convolution_device(Kernel_cnn* kernel, float*** input, float*** in funcPtr d_function = get_activation_function_cuda(activation); - backward_convolution_propagate_kernel<<>>(kernel, input, input_z, output, input_depth, input_width, output_depth, kernel_size, d_function); + backward_convolution_propagate_kernel<<>>(kernel->weights, input, input_z, output, input_depth, input_width, output_depth, kernel_size, d_function); gpuErrchk( cudaPeekAtLastError() ); gpuErrchk( cudaDeviceSynchronize() );