mirror of
https://github.com/augustin64/projet-tipe
synced 2025-01-23 23:26:25 +01:00
Fix headers
This commit is contained in:
parent
bae59ceef0
commit
3b99d3c4d1
@ -1,29 +1,40 @@
|
|||||||
#include <stdio.h>
|
#include <stdio.h>
|
||||||
#include <stdlib.h>
|
#include <stdlib.h>
|
||||||
|
|
||||||
|
#include "include/cuda_utils.h"
|
||||||
|
|
||||||
int*** copy_images_cuda(int*** images, int nb_images, int width, int height) {
|
int*** copy_images_cuda(int*** images, int nb_images, int width, int height) {
|
||||||
int*** images_cuda;
|
int*** images_cuda;
|
||||||
cudaMalloc((int****)&images_cuda, sizeof(int**)*nb_images);
|
cudaMalloc(&images_cuda, (size_t)sizeof(int**)*nb_images);
|
||||||
cudaMemcpy((int****)&images_cuda, sizeof(int**)*nb_images, images);
|
cudaMemcpy(images_cuda, &images, (size_t)sizeof(int**)*nb_images, cudaMemcpyHostToDevice);
|
||||||
|
|
||||||
for (int i=0; i < nb_images; i++) {
|
for (int i=0; i < nb_images; i++) {
|
||||||
cudaMalloc((int***)&images_cuda[i], sizeof(int**)*nb_images);
|
cudaMalloc(&images_cuda[i], sizeof(int**)*nb_images);
|
||||||
cudaMemcpy((int***)&images_cuda[i], sizeof(int**)*nb_images, images[i]);
|
cudaMemcpy(images_cuda[i], &images[i], sizeof(int**)*nb_images, cudaMemcpyHostToDevice);
|
||||||
for (int j=0; j < height; j++) {
|
for (int j=0; j < height; j++) {
|
||||||
cudaMalloc((int**)&images_cuda[i][j], sizeof(int*)*width);
|
cudaMalloc((int**)&images_cuda[i][j], sizeof(int*)*width);
|
||||||
cudaMemcpy((int**)&images_cuda[i][j], sizeof(int*)*width, images[i][j]);
|
cudaMemcpy(images_cuda[i][j], &images[i][j], sizeof(int*)*width, cudaMemcpyHostToDevice);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
return images_cuda;
|
return images_cuda;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
unsigned int* copy_labels_cuda(unsigned int* labels) {
|
unsigned int* copy_labels_cuda(unsigned int* labels) {
|
||||||
unsigned int* labels_cuda;
|
unsigned int* labels_cuda;
|
||||||
cudaMalloc((unsigned int**)&labels_cuda, sizeof(labels));
|
cudaMalloc(&labels_cuda, (size_t)sizeof(labels));
|
||||||
cudaMemcpy((unsigned int**)&labels_cuda, sizeof(labels), labels);
|
cudaMemcpy(labels_cuda, &labels, sizeof(labels), cudaMemcpyHostToDevice);
|
||||||
return labels_cuda;
|
return labels_cuda;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
void check_cuda_compatibility() {
|
||||||
|
int nDevices;
|
||||||
|
cudaError_t err = cudaGetDeviceCount(&nDevices);
|
||||||
|
if (err != cudaSuccess) {
|
||||||
|
printf("%s\n", cudaGetErrorString(err));
|
||||||
|
exit(1);
|
||||||
|
} else {
|
||||||
|
printf("CUDA-capable device is detected\n");
|
||||||
|
}
|
||||||
}
|
}
|
@ -6,5 +6,6 @@
|
|||||||
|
|
||||||
int*** copy_images_cuda(int*** images, int nb_images, int width, int height);
|
int*** copy_images_cuda(int*** images, int nb_images, int width, int height);
|
||||||
unsigned int* copy_labels_cuda(unsigned int* labels);
|
unsigned int* copy_labels_cuda(unsigned int* labels);
|
||||||
|
void check_cuda_compatibility();
|
||||||
|
|
||||||
#endif
|
#endif
|
27
src/mnist/include/main.h
Normal file
27
src/mnist/include/main.h
Normal file
@ -0,0 +1,27 @@
|
|||||||
|
#ifndef DEF_MAIN_H
|
||||||
|
#define DEF_MAIN_H
|
||||||
|
|
||||||
|
typedef struct TrainParameters {
|
||||||
|
Network* network;
|
||||||
|
int*** images;
|
||||||
|
int* labels;
|
||||||
|
int start;
|
||||||
|
int nb_images;
|
||||||
|
int height;
|
||||||
|
int width;
|
||||||
|
float accuracy;
|
||||||
|
} TrainParameters;
|
||||||
|
|
||||||
|
|
||||||
|
void print_image(unsigned int width, unsigned int height, int** image, float* previsions);
|
||||||
|
int indice_max(float* tab, int n);
|
||||||
|
void help(char* call);
|
||||||
|
void write_image_in_network(int** image, Network* network, int height, int width);
|
||||||
|
void* train_images(void* parameters);
|
||||||
|
void train(int epochs, int layers, int neurons, char* recovery, char* image_file, char* label_file, char* out, char* delta, int nb_images_to_process, int start);
|
||||||
|
float** recognize(char* modele, char* entree);
|
||||||
|
void print_recognize(char* modele, char* entree, char* sortie);
|
||||||
|
void test(char* modele, char* fichier_images, char* fichier_labels, bool preview_fails);
|
||||||
|
int main(int argc, char* argv[]);
|
||||||
|
|
||||||
|
#endif
|
@ -6,10 +6,8 @@
|
|||||||
#ifndef DEF_PREVIEW_H
|
#ifndef DEF_PREVIEW_H
|
||||||
#define DEF_PREVIEW_H
|
#define DEF_PREVIEW_H
|
||||||
|
|
||||||
uint32_t swap_endian(uint32_t val);
|
void print_image(unsigned int width, unsigned int height, int** image);
|
||||||
void print_image(unsigned int width, unsigned int height, FILE* ptr, int start);
|
void preview_images(char* images_file, char* labels_file);
|
||||||
void read_mnist_images(char* filename, unsigned int* labels);
|
|
||||||
unsigned int* read_mnist_labels(char* filename);
|
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
@ -9,25 +9,17 @@
|
|||||||
#include "neuron_io.c"
|
#include "neuron_io.c"
|
||||||
#include "mnist.c"
|
#include "mnist.c"
|
||||||
|
|
||||||
|
#include "include/main.h"
|
||||||
|
|
||||||
#define EPOCHS 10
|
#define EPOCHS 10
|
||||||
#define BATCHES 100
|
#define BATCHES 100
|
||||||
|
|
||||||
#ifdef __CUDACC__
|
#ifdef __CUDACC__
|
||||||
|
# warning compiling for CUDA compatible device only
|
||||||
# include "cuda_utils.cu"
|
# include "cuda_utils.cu"
|
||||||
# define MAX_CUDA_THREADS 1024 // from NVIDIA documentation
|
# define MAX_CUDA_THREADS 1024 // from NVIDIA documentation
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
typedef struct TrainParameters {
|
|
||||||
Network* network;
|
|
||||||
int*** images;
|
|
||||||
int* labels;
|
|
||||||
int start;
|
|
||||||
int nb_images;
|
|
||||||
int height;
|
|
||||||
int width;
|
|
||||||
float accuracy;
|
|
||||||
} TrainParameters;
|
|
||||||
|
|
||||||
|
|
||||||
void print_image(unsigned int width, unsigned int height, int** image, float* previsions) {
|
void print_image(unsigned int width, unsigned int height, int** image, float* previsions) {
|
||||||
char tab[] = {' ', '.', ':', '%', '#', '\0'};
|
char tab[] = {' ', '.', ':', '%', '#', '\0'};
|
||||||
@ -140,7 +132,8 @@ void train(int epochs, int layers, int neurons, char* recovery, char* image_file
|
|||||||
float accuracy;
|
float accuracy;
|
||||||
|
|
||||||
#ifdef __CUDACC__
|
#ifdef __CUDACC__
|
||||||
printf("Utilisation du GPU\n");
|
printf("Testing compatibility...\n");
|
||||||
|
check_cuda_compatibility();
|
||||||
int nb_threads = MAX_CUDA_THREADS;
|
int nb_threads = MAX_CUDA_THREADS;
|
||||||
#else
|
#else
|
||||||
printf("Pas d'utilisation du GPU\n");
|
printf("Pas d'utilisation du GPU\n");
|
||||||
|
@ -3,6 +3,7 @@
|
|||||||
#include <stdint.h>
|
#include <stdint.h>
|
||||||
#include <inttypes.h>
|
#include <inttypes.h>
|
||||||
|
|
||||||
|
#include "include/mnist.h"
|
||||||
|
|
||||||
uint32_t swap_endian(uint32_t val) {
|
uint32_t swap_endian(uint32_t val) {
|
||||||
val = ((val << 8) & 0xFF00FF00) | ((val >> 8) & 0xFF00FF);
|
val = ((val << 8) & 0xFF00FF00) | ((val >> 8) & 0xFF00FF);
|
||||||
|
@ -7,6 +7,7 @@
|
|||||||
#include <time.h>
|
#include <time.h>
|
||||||
|
|
||||||
#include "include/neuron.h"
|
#include "include/neuron.h"
|
||||||
|
#include "include/neural_network.h"
|
||||||
|
|
||||||
// Définit le taux d'apprentissage du réseau neuronal, donc la rapidité d'adaptation du modèle (compris entre 0 et 1)
|
// Définit le taux d'apprentissage du réseau neuronal, donc la rapidité d'adaptation du modèle (compris entre 0 et 1)
|
||||||
// Cette valeur peut évoluer au fur et à mesure des époques (linéaire c'est mieux)
|
// Cette valeur peut évoluer au fur et à mesure des époques (linéaire c'est mieux)
|
||||||
@ -404,16 +405,16 @@ Network* copy_network_cuda(Network* network) {
|
|||||||
Neuron* neuron1;
|
Neuron* neuron1;
|
||||||
Neuron* neuron;
|
Neuron* neuron;
|
||||||
|
|
||||||
cudaMalloc((void**)&network2, sizeof(Network));
|
cudaMalloc(&network2, (size_t)sizeof(Network));
|
||||||
|
|
||||||
network2->nb_layers = network->nb_layers;
|
network2->nb_layers = network->nb_layers;
|
||||||
cudaMalloc((void***)&network2->layers, sizeof(Layer*)*network->nb_layers);
|
cudaMalloc(&network2->layers, (size_t)sizeof(Layer*)*network->nb_layers);
|
||||||
for (int i=0; i < network2->nb_layers; i++) {
|
for (int i=0; i < network2->nb_layers; i++) {
|
||||||
cudaMalloc((void**)&layer, sizeof(Layer));
|
cudaMalloc(&layer, (size_t)sizeof(Layer));
|
||||||
layer->nb_neurons = network->layers[i]->nb_neurons;
|
layer->nb_neurons = network->layers[i]->nb_neurons;
|
||||||
cudaMalloc((void***)&layer->neurons, sizeof(Neuron*)*layer->nb_neurons);
|
cudaMalloc(&layer->neurons, (size_t)sizeof(Neuron*)*layer->nb_neurons);
|
||||||
for (int j=0; j < layer->nb_neurons; j++) {
|
for (int j=0; j < layer->nb_neurons; j++) {
|
||||||
cudaMalloc((void**)neuron, sizeof(Neuron));
|
cudaMalloc(&neuron, (size_t)sizeof(Neuron));
|
||||||
|
|
||||||
neuron1 = network->layers[i]->neurons[j];
|
neuron1 = network->layers[i]->neurons[j];
|
||||||
neuron->bias = neuron1->bias;
|
neuron->bias = neuron1->bias;
|
||||||
@ -422,9 +423,10 @@ Network* copy_network_cuda(Network* network) {
|
|||||||
neuron->last_back_bias = neuron1->last_back_bias;
|
neuron->last_back_bias = neuron1->last_back_bias;
|
||||||
if (i != network2->nb_layers-1) {
|
if (i != network2->nb_layers-1) {
|
||||||
(void)network2->layers[i+1]->nb_neurons;
|
(void)network2->layers[i+1]->nb_neurons;
|
||||||
cudaMalloc((float**)&neuron->weights, sizeof(float)*network->layers[i+1]->nb_neurons);
|
cudaMalloc(&neuron->weights, (size_t)sizeof(float)*network->layers[i+1]->nb_neurons);
|
||||||
cudaMalloc((float**)&neuron->back_weights, sizeof(float)*network->layers[i+1]->nb_neurons);
|
cudaMalloc(&neuron->back_weights, (size_t)sizeof(float)*network->layers[i+1]->nb_neurons);
|
||||||
cudaMalloc((float**)&neuron->last_back_weights, sizeof(float)*network->layers[i+1]->nb_neurons);
|
cudaMalloc(&neuron->last_back_weights, (size_t)sizeof(float)*network->layers[i+1]->nb_neurons);
|
||||||
|
|
||||||
for (int k=0; k < network->layers[i+1]->nb_neurons; k++) {
|
for (int k=0; k < network->layers[i+1]->nb_neurons; k++) {
|
||||||
neuron->weights[k] = neuron1->weights[k];
|
neuron->weights[k] = neuron1->weights[k];
|
||||||
neuron->back_weights[k] = neuron1->back_weights[k];
|
neuron->back_weights[k] = neuron1->back_weights[k];
|
||||||
|
@ -4,6 +4,7 @@
|
|||||||
#include <inttypes.h>
|
#include <inttypes.h>
|
||||||
|
|
||||||
#include "include/neuron.h"
|
#include "include/neuron.h"
|
||||||
|
#include "include/neuron_io.h"
|
||||||
|
|
||||||
#define MAGIC_NUMBER 2023
|
#define MAGIC_NUMBER 2023
|
||||||
#define DELTA_MAGIC_NUMBER 2024
|
#define DELTA_MAGIC_NUMBER 2024
|
||||||
|
@ -4,6 +4,7 @@
|
|||||||
#include <inttypes.h>
|
#include <inttypes.h>
|
||||||
|
|
||||||
#include "mnist.c"
|
#include "mnist.c"
|
||||||
|
#include "include/preview.h"
|
||||||
|
|
||||||
|
|
||||||
// Prévisualise un chiffre écrit à la main
|
// Prévisualise un chiffre écrit à la main
|
||||||
@ -11,8 +12,8 @@
|
|||||||
void print_image(unsigned int width, unsigned int height, int** image) {
|
void print_image(unsigned int width, unsigned int height, int** image) {
|
||||||
char tab[] = {' ', '.', ':', '%', '#', '\0'};
|
char tab[] = {' ', '.', ':', '%', '#', '\0'};
|
||||||
|
|
||||||
for (int i=0; i < height; i++) {
|
for (int i=0; i < (int)height; i++) {
|
||||||
for (int j=0; j < width; j++) {
|
for (int j=0; j < (int)width; j++) {
|
||||||
printf("%c", tab[image[i][j]/52]);
|
printf("%c", tab[image[i][j]/52]);
|
||||||
}
|
}
|
||||||
printf("\n");
|
printf("\n");
|
||||||
|
Loading…
Reference in New Issue
Block a user