mirror of
https://github.com/augustin64/projet-tipe
synced 2025-01-23 15:16:26 +01:00
write image: automatically detect padding
This commit is contained in:
parent
06abf0bc6b
commit
329e213e1f
@ -1,5 +1,6 @@
|
||||
#include <stdbool.h>
|
||||
#include <stdlib.h>
|
||||
#include <assert.h>
|
||||
#include <stdio.h>
|
||||
#include <float.h>
|
||||
#include <math.h>
|
||||
@ -17,8 +18,6 @@
|
||||
|
||||
#include "include/cnn.h"
|
||||
|
||||
// Augmente les dimensions de l'image d'entrée
|
||||
#define PADDING_INPUT 2
|
||||
|
||||
int indice_max(float* tab, int n) {
|
||||
int indice = -1;
|
||||
@ -131,25 +130,27 @@ void write_image_in_network_32(int** image, int height, int width, float** input
|
||||
}
|
||||
}
|
||||
|
||||
void write_image_in_network_260(unsigned char* image, int height, int width, float*** input) {
|
||||
int size_input = 260;
|
||||
int padding = (size_input - height)/2;
|
||||
void write_256_image_in_network(unsigned char* image, int img_width, int img_depth, int input_width, float*** input) {
|
||||
assert(img_width <= input_width);
|
||||
assert((input_width - img_width)%2 == 0);
|
||||
|
||||
int padding = (input_width - img_width)/2;
|
||||
|
||||
for (int i=0; i < padding; i++) {
|
||||
for (int j=0; j < size_input; j++) {
|
||||
for (int composante=0; composante < 3; composante++) {
|
||||
for (int j=0; j < input_width; j++) {
|
||||
for (int composante=0; composante < img_depth; composante++) {
|
||||
input[composante][i][j] = 0.;
|
||||
input[composante][size_input-1-i][j] = 0.;
|
||||
input[composante][input_width-1-i][j] = 0.;
|
||||
input[composante][j][i] = 0.;
|
||||
input[composante][j][size_input-1-i] = 0.;
|
||||
input[composante][j][input_width-1-i] = 0.;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (int i=0; i < width; i++) {
|
||||
for (int j=0; j < height; j++) {
|
||||
for (int composante=0; composante < 3; composante++) {
|
||||
input[composante][i+2][j+2] = (float)image[(i*height+j)*3 + composante] / 255.0f;
|
||||
for (int i=0; i < img_width; i++) {
|
||||
for (int j=0; j < img_width; j++) {
|
||||
for (int composante=0; composante < img_depth; composante++) {
|
||||
input[composante][i+padding][j+padding] = (float)image[(i*img_width+j)*img_depth + composante] / 255.0f;
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -219,7 +220,7 @@ void forward_propagation(Network* network) {
|
||||
make_max_pooling(input, output, kernel_size, output_depth, output_width, stride, padding);
|
||||
}
|
||||
else {
|
||||
printf_error("Impossible de reconnaître le type de couche de pooling: ");
|
||||
printf_error((char*)"Impossible de reconnaître le type de couche de pooling: ");
|
||||
printf("identifiant: %d, position: %d\n", pooling, i);
|
||||
}
|
||||
}
|
||||
|
@ -126,7 +126,7 @@ void visual_propagation(char* modele_file, char* mnist_images_file, char* out_ba
|
||||
free(mnist_parameters);
|
||||
|
||||
if (numero < 0 || numero >= nb_elem) {
|
||||
printf_error("Numéro d'image spécifié invalide.");
|
||||
printf_error((char*)"Numéro d'image spécifié invalide.");
|
||||
printf(" Le fichier contient %d images.\n", nb_elem);
|
||||
exit(1);
|
||||
}
|
||||
@ -145,7 +145,7 @@ void visual_propagation(char* modele_file, char* mnist_images_file, char* out_ba
|
||||
} else {
|
||||
imgRawImage* image = loadJpegImageFile(jpeg_file);
|
||||
|
||||
write_image_in_network_260(image->lpData, image->height, image->width, network->input[0]);
|
||||
write_256_image_in_network(image->lpData, image->width, image->numComponents, network->width[0], network->input[0]);
|
||||
|
||||
// Free allocated memory from image reading
|
||||
free(image->lpData);
|
||||
|
@ -20,9 +20,12 @@ int will_be_drop(int dropout_prob);
|
||||
void write_image_in_network_32(int** image, int height, int width, float** input, bool random_offset);
|
||||
|
||||
/*
|
||||
* Écrit une image linéarisée de 256*256*3 pixels dans un tableau de taille 260*260*3
|
||||
* Écrit une image linéarisée de img_width*img_width*img_depth pixels dans un tableau de taille size_input*size_input*3
|
||||
* Les conditions suivantes doivent être respectées:
|
||||
* - l'image est au plus de la même taille que input
|
||||
* - la différence de taille entre input et l'image doit être un multiple de 2 (pour centrer l'image)
|
||||
*/
|
||||
void write_image_in_network_260(unsigned char* image, int height, int width, float*** input);
|
||||
void write_256_image_in_network(unsigned char* image, int img_width, int img_depth, int input_width, float*** input);
|
||||
|
||||
/*
|
||||
* Propage en avant le cnn. Le dropout est actif que si le réseau est en phase d'apprentissage.
|
||||
|
@ -79,7 +79,7 @@ float* test_network_jpg(Network* network, char* data_dir, bool preview_fails, bo
|
||||
printf("Avancement: %.1f%%\r", 1000*i/(float)dataset->numImages);
|
||||
fflush(stdout);
|
||||
}
|
||||
write_image_in_network_260(dataset->images[i], dataset->height, dataset->height, network->input[0]);
|
||||
write_256_image_in_network(dataset->images[i], dataset->height, dataset->numComponents, network->width[0], network->input[0]);
|
||||
forward_propagation(network);
|
||||
maxi = indice_max(network->input[network->size-1][0][0], 50);
|
||||
|
||||
@ -196,7 +196,7 @@ void recognize_jpg(Network* network, char* input_file, char* out) {
|
||||
}
|
||||
|
||||
// Load image in the first layer of the Network
|
||||
write_image_in_network_260(image->lpData, height, width, network->input[0]);
|
||||
write_256_image_in_network(image->lpData, width, image->numComponents, network->width[0], network->input[0]);
|
||||
forward_propagation(network);
|
||||
|
||||
|
||||
|
@ -103,7 +103,7 @@ void* train_thread(void* parameters) {
|
||||
load_image_param->index = index[i+1];
|
||||
pthread_create(&tid, NULL, load_image, (void*) load_image_param);
|
||||
}
|
||||
write_image_in_network_260(param->dataset->images[index[i]], height, width, network->input[0]);
|
||||
write_256_image_in_network(param->dataset->images[index[i]], width, param->dataset->numComponents, network->width[0], network->input[0]);
|
||||
forward_propagation(network);
|
||||
maxi = indice_max(network->input[network->size-1][0][0], param->dataset->numCategories);
|
||||
backward_propagation(network, param->dataset->labels[index[i]]);
|
||||
|
Loading…
Reference in New Issue
Block a user