Add check_cuda_compatibility()

This commit is contained in:
augustin64 2022-10-14 17:54:12 +02:00
parent 4839872c9b
commit 31e11f8d90

View File

@ -1,5 +1,6 @@
#include <stdlib.h> #include <stdlib.h>
#include <stdio.h> #include <stdio.h>
#include <stdbool.h>
#include <time.h> #include <time.h>
#define BLOCKSIZE_x 16 #define BLOCKSIZE_x 16
@ -16,21 +17,16 @@ inline void gpuAssert(cudaError_t code, const char *file, int line, bool abort=t
} }
#endif #endif
int iDivUp(int hostPtr, int b){ float random_float(float low, float high) {
return ((hostPtr % b) != 0) ? (hostPtr / b + 1) : (hostPtr / b);
}
float RandFloat(float low, float high) {
float t = (float)rand() / (float)RAND_MAX; float t = (float)rand() / (float)RAND_MAX;
return (1.0f - t) * low + t * high; return (1.0f - t) * low + t * high;
} }
void fillMatrixWithRandomValues(float **matrix, int n, int p) { void fill_matrix_random(float **matrix, int n, int p) {
for (int i=0; i < n; i++) { for (int i=0; i < n; i++) {
for (int j=0; j < p; j++) { for (int j=0; j < p; j++) {
matrix[i][j] = RandFloat(0.0f, 15.0f); matrix[i][j] = random_float(0.0f, 15.0f);
} }
} }
} }
@ -53,7 +49,7 @@ float** create_matrix(int n, int p) {
matrix[i] = (float*)malloc(sizeof(float)*p); matrix[i] = (float*)malloc(sizeof(float)*p);
} }
fillMatrixWithRandomValues(matrix, n, p); fill_matrix_random(matrix, n, p);
return matrix; return matrix;
} }
@ -71,7 +67,12 @@ float** create_empty_matrix(int n, int p) {
#ifdef __CUDACC__ #ifdef __CUDACC__
__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int n, int p, int q, size_t pitch_m, size_t pitch_n, size_t pitch_p) { int i_div_up(int hostPtr, int b){
return ((hostPtr % b) != 0) ? (hostPtr / b + 1) : (hostPtr / b);
}
__global__ void matrix_mul_kernel(float* Md, float* Nd, float* Pd, int n, int p, int q, size_t pitch_m, size_t pitch_n, size_t pitch_p) {
// 2D Thread ID // 2D Thread ID
int tx = blockIdx.x*blockDim.x + threadIdx.x; int tx = blockIdx.x*blockDim.x + threadIdx.x;
int ty = blockIdx.y*blockDim.y + threadIdx.y; int ty = blockIdx.y*blockDim.y + threadIdx.y;
@ -92,7 +93,7 @@ __global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int n, int p, i
} }
void matrix_multiplication(float** m1, float** m2, float** result, int n, int p, int q) { void matrix_multiplication_device(float** m1, float** m2, float** result, int n, int p, int q) {
// Préparation des matrices // Préparation des matrices
size_t pitch_m1_dev; size_t pitch_m1_dev;
size_t pitch_m2_dev; size_t pitch_m2_dev;
@ -114,10 +115,10 @@ void matrix_multiplication(float** m1, float** m2, float** result, int n, int p,
gpuErrchk( cudaMallocPitch((void**)&result_dev, &pitch_result_dev, q * sizeof(float), n)); gpuErrchk( cudaMallocPitch((void**)&result_dev, &pitch_result_dev, q * sizeof(float), n));
// Traitement // Traitement
dim3 gridSize(iDivUp(n, BLOCKSIZE_x), iDivUp(q, BLOCKSIZE_y)); dim3 gridSize(i_div_up(n, BLOCKSIZE_x), i_div_up(q, BLOCKSIZE_y));
dim3 blockSize(BLOCKSIZE_y, BLOCKSIZE_x); dim3 blockSize(BLOCKSIZE_y, BLOCKSIZE_x);
MatrixMulKernel<<<gridSize, blockSize>>>(m1_dev, m2_dev, result_dev, n, p, q, pitch_m1_dev, pitch_m2_dev, pitch_result_dev); matrix_mul_kernel<<<gridSize, blockSize>>>(m1_dev, m2_dev, result_dev, n, p, q, pitch_m1_dev, pitch_m2_dev, pitch_result_dev);
gpuErrchk( cudaPeekAtLastError() ); gpuErrchk( cudaPeekAtLastError() );
gpuErrchk( cudaDeviceSynchronize() ); gpuErrchk( cudaDeviceSynchronize() );
@ -132,18 +133,60 @@ void matrix_multiplication(float** m1, float** m2, float** result, int n, int p,
gpuErrchk( cudaPeekAtLastError() ); gpuErrchk( cudaPeekAtLastError() );
gpuErrchk( cudaDeviceSynchronize() ); gpuErrchk( cudaDeviceSynchronize() );
} }
#endif
#else
void matrix_multiplication(float* m1, float* m2, float* result, int n, int p, int q) { bool check_cuda_compatibility() {
#ifdef __CUDACC__
int nDevices;
cudaDeviceProp prop;
cudaGetDeviceCount(&nDevices);
if (nDevices == 0) {
printf("Pas d'utilisation du GPU\n\n");
return false;
}
printf("GPUs disponibles:\n");
for (int i=0; i < nDevices; i++) {
cudaGetDeviceProperties(&prop, i);
printf(" - %s\n", prop.name);
}
cudaGetDeviceProperties(&prop, 0);
printf("Utilisation du GPU: %s\n\n", prop.name);
return true;
#else
printf("Pas d'utilisation du GPU\n\n");
return false;
#endif
}
void matrix_multiplication_host(float** m1, float** m2, float** result, int n, int p, int q) {
for (int i=0; i < n; i++) { for (int i=0; i < n; i++) {
for (int j=0; j < q; j++) { for (int j=0; j < q; j++) {
result[i][j] = 0.;
for (int k=0; k < p; k++) { for (int k=0; k < p; k++) {
result[i*q+j] += m1[i*p+k] + m2[k*q+j]; result[i][j] += m1[i][k] + m2[k][j];
} }
} }
} }
} }
#endif
void matrix_multiplication(float** m1, float** m2, float** result, int n, int p, int q, bool use_cuda) {
#ifdef __CUDACC__
if (use_cuda) {
matrix_multiplication_device(m1, m2, result, n, p, q);
} else {
matrix_multiplication_host(m1, m2, result, n, p, q);
}
#else
matrix_multiplication_host(m1, m2, result, n, p, q);
#endif
}
int main() { int main() {
@ -159,7 +202,7 @@ int main() {
double cpu_time_used; double cpu_time_used;
start = clock(); start = clock();
matrix_multiplication(matrix1, matrix2, result, n, p, q); matrix_multiplication(matrix1, matrix2, result, n, p, q, check_cuda_compatibility());
end = clock(); end = clock();
cpu_time_used = ((double) (end - start)) / CLOCKS_PER_SEC; cpu_time_used = ((double) (end - start)) / CLOCKS_PER_SEC;