mirror of
https://github.com/augustin64/projet-tipe
synced 2025-02-02 19:39:39 +01:00
dense: Add random offset option
This commit is contained in:
parent
a2cd6ef551
commit
3183339b7a
@ -28,7 +28,7 @@ void help(char* call);
|
|||||||
* network: réseau neuronal
|
* network: réseau neuronal
|
||||||
* height, width: dimensions de l'image
|
* height, width: dimensions de l'image
|
||||||
*/
|
*/
|
||||||
void write_image_in_network(int** image, Network* network, int height, int width);
|
void write_image_in_network(int** image, Network* network, int height, int width, bool random_offset);
|
||||||
|
|
||||||
/*
|
/*
|
||||||
* Sous fonction de 'train' assignée à un thread
|
* Sous fonction de 'train' assignée à un thread
|
||||||
@ -49,7 +49,7 @@ void* train_thread(void* parameters);
|
|||||||
* nb_images_to_process: nombre d'images sur lesquelles entraîner le réseau (-1 si non utilisé)
|
* nb_images_to_process: nombre d'images sur lesquelles entraîner le réseau (-1 si non utilisé)
|
||||||
* start: index auquel démarrer si nb_images_to_process est utilisé (0 si non utilisé)
|
* start: index auquel démarrer si nb_images_to_process est utilisé (0 si non utilisé)
|
||||||
*/
|
*/
|
||||||
void train(int epochs, char* recovery, char* image_file, char* label_file, char* out, char* delta, int nb_images_to_process, int start);
|
void train(int epochs, char* recovery, char* image_file, char* label_file, char* out, char* delta, int nb_images_to_process, int start, bool random_offset);
|
||||||
|
|
||||||
/*
|
/*
|
||||||
* Échange deux éléments d'un tableau
|
* Échange deux éléments d'un tableau
|
||||||
@ -66,7 +66,7 @@ void knuth_shuffle(int* tab, int n);
|
|||||||
* modele: nom du fichier contenant le réseau neuronal
|
* modele: nom du fichier contenant le réseau neuronal
|
||||||
* entree: nom du fichier contenant les images à reconnaître
|
* entree: nom du fichier contenant les images à reconnaître
|
||||||
*/
|
*/
|
||||||
float** recognize(char* modele, char* entree);
|
float** recognize(char* modele, char* entree, bool random_offset);
|
||||||
|
|
||||||
/*
|
/*
|
||||||
* Renvoie les prédictions d'images sur stdout
|
* Renvoie les prédictions d'images sur stdout
|
||||||
@ -74,7 +74,7 @@ float** recognize(char* modele, char* entree);
|
|||||||
* entree: fichier contenant les images
|
* entree: fichier contenant les images
|
||||||
* sortie: vaut 'text' ou 'json', spécifie le format auquel afficher les prédictions
|
* sortie: vaut 'text' ou 'json', spécifie le format auquel afficher les prédictions
|
||||||
*/
|
*/
|
||||||
void print_recognize(char* modele, char* entree, char* sortie);
|
void print_recognize(char* modele, char* entree, char* sortie, bool random_offset);
|
||||||
|
|
||||||
/*
|
/*
|
||||||
* Teste un réseau neuronal avec un fichier d'images ainsi que leurs propriétés
|
* Teste un réseau neuronal avec un fichier d'images ainsi que leurs propriétés
|
||||||
@ -83,7 +83,7 @@ void print_recognize(char* modele, char* entree, char* sortie);
|
|||||||
* fichier_labels: nom du fichier contenant les labels
|
* fichier_labels: nom du fichier contenant les labels
|
||||||
* preview_fails: faut-il afficher les images qui ne sont pas correctement reconnues ?
|
* preview_fails: faut-il afficher les images qui ne sont pas correctement reconnues ?
|
||||||
*/
|
*/
|
||||||
void test(char* modele, char* fichier_images, char* fichier_labels, bool preview_fails);
|
void test(char* modele, char* fichier_images, char* fichier_labels, bool preview_fails, bool random_offset);
|
||||||
|
|
||||||
int main(int argc, char* argv[]);
|
int main(int argc, char* argv[]);
|
||||||
|
|
||||||
|
@ -22,8 +22,8 @@
|
|||||||
#define PRINT_BIAIS false
|
#define PRINT_BIAIS false
|
||||||
|
|
||||||
// Mettre à 1 pour désactiver
|
// Mettre à 1 pour désactiver
|
||||||
#define DROPOUT 0.7
|
#define DROPOUT 1
|
||||||
#define ENTRY_DROPOUT 0.85
|
#define ENTRY_DROPOUT 1
|
||||||
|
|
||||||
|
|
||||||
bool drop(float prob);
|
bool drop(float prob);
|
||||||
|
104
src/dense/main.c
104
src/dense/main.c
@ -29,6 +29,7 @@ typedef struct TrainParameters {
|
|||||||
int height;
|
int height;
|
||||||
int width;
|
int width;
|
||||||
float accuracy;
|
float accuracy;
|
||||||
|
bool offset;
|
||||||
} TrainParameters;
|
} TrainParameters;
|
||||||
|
|
||||||
|
|
||||||
@ -71,6 +72,7 @@ void help(char* call) {
|
|||||||
printf("\t\t--delta | -d [FILENAME]\tFichier où écrire le réseau différentiel.\n");
|
printf("\t\t--delta | -d [FILENAME]\tFichier où écrire le réseau différentiel.\n");
|
||||||
printf("\t\t--nb-images | -N [int]\tNombres d'images à traiter.\n");
|
printf("\t\t--nb-images | -N [int]\tNombres d'images à traiter.\n");
|
||||||
printf("\t\t--start | -s [int]\tPremière image à traiter.\n");
|
printf("\t\t--start | -s [int]\tPremière image à traiter.\n");
|
||||||
|
printf("\t\t--offset \tActiver le décalage aléatoire.\n");
|
||||||
printf("\trecognize:\n");
|
printf("\trecognize:\n");
|
||||||
printf("\t\t--modele | -m [FILENAME]\tFichier contenant le réseau de neurones.\n");
|
printf("\t\t--modele | -m [FILENAME]\tFichier contenant le réseau de neurones.\n");
|
||||||
printf("\t\t--in | -i [FILENAME]\tFichier contenant les images à reconnaître.\n");
|
printf("\t\t--in | -i [FILENAME]\tFichier contenant les images à reconnaître.\n");
|
||||||
@ -80,16 +82,67 @@ void help(char* call) {
|
|||||||
printf("\t\t--labels | -l [FILENAME]\tFichier contenant les labels.\n");
|
printf("\t\t--labels | -l [FILENAME]\tFichier contenant les labels.\n");
|
||||||
printf("\t\t--modele | -m [FILENAME]\tFichier contenant le réseau de neurones.\n");
|
printf("\t\t--modele | -m [FILENAME]\tFichier contenant le réseau de neurones.\n");
|
||||||
printf("\t\t--preview-fails | -p\tAfficher les images ayant échoué.\n");
|
printf("\t\t--preview-fails | -p\tAfficher les images ayant échoué.\n");
|
||||||
|
printf("\t\t--offset \tActiver le décalage aléatoire.\n");
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
void write_image_in_network(int** image, Network* network, int height, int width) {
|
void write_image_in_network(int** image, Network* network, int height, int width, bool random_offset) {
|
||||||
for (int i=0; i < height; i++) {
|
int i_offset = 0;
|
||||||
for (int j=0; j < width; j++) {
|
int j_offset = 0;
|
||||||
if (!drop(ENTRY_DROPOUT)) {
|
int min_col = 0;
|
||||||
network->layers[0]->neurons[i*height+j]->z = (float)image[i][j] / 255.0f;
|
int min_ligne = 0;
|
||||||
|
|
||||||
|
if (random_offset) {
|
||||||
|
int sum_colonne[width];
|
||||||
|
int sum_ligne[height];
|
||||||
|
|
||||||
|
for (int i=0; i < width; i++) {
|
||||||
|
sum_colonne[i] = 0;
|
||||||
|
}
|
||||||
|
for (int j=0; j < height; j++) {
|
||||||
|
sum_ligne[j] = 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
for (int i=0; i < width; i++) {
|
||||||
|
for (int j=0; j < height; j++) {
|
||||||
|
sum_ligne[i] += image[i][j];
|
||||||
|
sum_colonne[j] += image[i][j];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
min_ligne = -1;
|
||||||
|
while (sum_ligne[min_ligne+1] == 0 && min_ligne < width+1) {
|
||||||
|
min_ligne++;
|
||||||
|
}
|
||||||
|
|
||||||
|
int max_ligne = width;
|
||||||
|
while (sum_ligne[max_ligne-1] == 0 && max_ligne > 0) {
|
||||||
|
max_ligne--;
|
||||||
|
}
|
||||||
|
|
||||||
|
min_col = -1;
|
||||||
|
while (sum_colonne[min_col+1] == 0 && min_col < height+1) {
|
||||||
|
min_col++;
|
||||||
|
}
|
||||||
|
|
||||||
|
int max_col = height;
|
||||||
|
while (sum_colonne[max_col-1] == 0 && max_col > 0) {
|
||||||
|
max_col--;
|
||||||
|
}
|
||||||
|
|
||||||
|
i_offset = 27-max_ligne+min_ligne == 0 ? 0 : rand()%(27-max_ligne+min_ligne);
|
||||||
|
j_offset = 27 - max_col + min_col == 0 ? 0 : rand()%(27-max_col+min_col);
|
||||||
|
}
|
||||||
|
|
||||||
|
for (int i=0; i < width; i++) {
|
||||||
|
for (int j=0; j < height; j++) {
|
||||||
|
int adjusted_i = i + min_ligne - i_offset;
|
||||||
|
int adjusted_j = j + min_col - j_offset;
|
||||||
|
// Make sure not to be out of the image
|
||||||
|
if (!drop(ENTRY_DROPOUT) && adjusted_i < height && adjusted_j < width && adjusted_i >= 0 && adjusted_j >= 0) {
|
||||||
|
network->layers[0]->neurons[i*height+j]->z = (float)image[adjusted_i][adjusted_j] / 255.0f;
|
||||||
} else {
|
} else {
|
||||||
network->layers[0]->neurons[i*height+j]->z = 0;
|
network->layers[0]->neurons[i*height+j]->z = 0.;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -114,7 +167,7 @@ void* train_thread(void* parameters) {
|
|||||||
int* desired_output;
|
int* desired_output;
|
||||||
|
|
||||||
for (int i=start; i < start+nb_images; i++) {
|
for (int i=start; i < start+nb_images; i++) {
|
||||||
write_image_in_network(images[shuffle[i]], network, height, width);
|
write_image_in_network(images[shuffle[i]], network, height, width, param->offset);
|
||||||
desired_output = desired_output_creation(network, labels[shuffle[i]]);
|
desired_output = desired_output_creation(network, labels[shuffle[i]]);
|
||||||
forward_propagation(network, true);
|
forward_propagation(network, true);
|
||||||
backward_propagation(network, desired_output);
|
backward_propagation(network, desired_output);
|
||||||
@ -134,7 +187,7 @@ void* train_thread(void* parameters) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
void train(int epochs, char* recovery, char* image_file, char* label_file, char* out, char* delta, int nb_images_to_process, int start) {
|
void train(int epochs, char* recovery, char* image_file, char* label_file, char* out, char* delta, int nb_images_to_process, int start, bool offset) {
|
||||||
// Entraînement du réseau sur le set de données MNIST
|
// Entraînement du réseau sur le set de données MNIST
|
||||||
Network* network;
|
Network* network;
|
||||||
Network* delta_network;
|
Network* delta_network;
|
||||||
@ -207,6 +260,7 @@ void train(int epochs, char* recovery, char* image_file, char* label_file, char*
|
|||||||
train_parameters[j]->width = width;
|
train_parameters[j]->width = width;
|
||||||
train_parameters[j]->nb_images = BATCHES / nb_threads;
|
train_parameters[j]->nb_images = BATCHES / nb_threads;
|
||||||
train_parameters[j]->shuffle_indices = shuffle_indices;
|
train_parameters[j]->shuffle_indices = shuffle_indices;
|
||||||
|
train_parameters[j]->offset = offset;
|
||||||
}
|
}
|
||||||
|
|
||||||
for (int i=0; i < epochs; i++) {
|
for (int i=0; i < epochs; i++) {
|
||||||
@ -245,7 +299,7 @@ void train(int epochs, char* recovery, char* image_file, char* label_file, char*
|
|||||||
if (delta != NULL)
|
if (delta != NULL)
|
||||||
write_delta_network(delta, delta_network);
|
write_delta_network(delta, delta_network);
|
||||||
|
|
||||||
test(out, "data/mnist/t10k-images-idx3-ubyte", "data/mnist/t10k-labels-idx1-ubyte", false);
|
test(out, "data/mnist/t10k-images-idx3-ubyte", "data/mnist/t10k-labels-idx1-ubyte", false, offset);
|
||||||
}
|
}
|
||||||
write_network(out, network);
|
write_network(out, network);
|
||||||
if (delta != NULL) {
|
if (delta != NULL) {
|
||||||
@ -283,7 +337,7 @@ void knuth_shuffle(int* tab, int n) {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
float** recognize(char* modele, char* entree) {
|
float** recognize(char* modele, char* entree, bool offset) {
|
||||||
Network* network = read_network(modele);
|
Network* network = read_network(modele);
|
||||||
Layer* last_layer = network->layers[network->nb_layers-1];
|
Layer* last_layer = network->layers[network->nb_layers-1];
|
||||||
|
|
||||||
@ -299,7 +353,7 @@ float** recognize(char* modele, char* entree) {
|
|||||||
for (int i=0; i < nb_images; i++) {
|
for (int i=0; i < nb_images; i++) {
|
||||||
results[i] = (float*)malloc(sizeof(float)*last_layer->nb_neurons);
|
results[i] = (float*)malloc(sizeof(float)*last_layer->nb_neurons);
|
||||||
|
|
||||||
write_image_in_network(images[i], network, height, width);
|
write_image_in_network(images[i], network, height, width, offset);
|
||||||
forward_propagation(network, false);
|
forward_propagation(network, false);
|
||||||
|
|
||||||
for (int j=0; j < last_layer->nb_neurons; j++) {
|
for (int j=0; j < last_layer->nb_neurons; j++) {
|
||||||
@ -310,7 +364,7 @@ float** recognize(char* modele, char* entree) {
|
|||||||
return results;
|
return results;
|
||||||
}
|
}
|
||||||
|
|
||||||
void print_recognize(char* modele, char* entree, char* sortie) {
|
void print_recognize(char* modele, char* entree, char* sortie, bool offset) {
|
||||||
Network* network = read_network(modele);
|
Network* network = read_network(modele);
|
||||||
int nb_last_layer = network->layers[network->nb_layers-1]->nb_neurons;
|
int nb_last_layer = network->layers[network->nb_layers-1]->nb_neurons;
|
||||||
|
|
||||||
@ -319,7 +373,7 @@ void print_recognize(char* modele, char* entree, char* sortie) {
|
|||||||
int* parameters = read_mnist_images_parameters(entree);
|
int* parameters = read_mnist_images_parameters(entree);
|
||||||
int nb_images = parameters[0];
|
int nb_images = parameters[0];
|
||||||
|
|
||||||
float** results = recognize(modele, entree);
|
float** results = recognize(modele, entree, offset);
|
||||||
|
|
||||||
if (! strcmp(sortie, "json")) {
|
if (! strcmp(sortie, "json")) {
|
||||||
printf("{\n");
|
printf("{\n");
|
||||||
@ -356,7 +410,7 @@ void print_recognize(char* modele, char* entree, char* sortie) {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
void test(char* modele, char* fichier_images, char* fichier_labels, bool preview_fails) {
|
void test(char* modele, char* fichier_images, char* fichier_labels, bool preview_fails, bool offset) {
|
||||||
Network* network = read_network(modele);
|
Network* network = read_network(modele);
|
||||||
int nb_last_layer = network->layers[network->nb_layers-1]->nb_neurons;
|
int nb_last_layer = network->layers[network->nb_layers-1]->nb_neurons;
|
||||||
|
|
||||||
@ -368,7 +422,7 @@ void test(char* modele, char* fichier_images, char* fichier_labels, bool preview
|
|||||||
int height = parameters[2];
|
int height = parameters[2];
|
||||||
int*** images = read_mnist_images(fichier_images);
|
int*** images = read_mnist_images(fichier_images);
|
||||||
|
|
||||||
float** results = recognize(modele, fichier_images);
|
float** results = recognize(modele, fichier_images, offset);
|
||||||
unsigned int* labels = read_mnist_labels(fichier_labels);
|
unsigned int* labels = read_mnist_labels(fichier_labels);
|
||||||
float accuracy = 0.;
|
float accuracy = 0.;
|
||||||
|
|
||||||
@ -402,6 +456,8 @@ int main(int argc, char* argv[]) {
|
|||||||
char* recovery = NULL;
|
char* recovery = NULL;
|
||||||
char* out = NULL;
|
char* out = NULL;
|
||||||
char* delta = NULL;
|
char* delta = NULL;
|
||||||
|
bool offset = false;
|
||||||
|
|
||||||
int i = 2;
|
int i = 2;
|
||||||
while (i < argc) {
|
while (i < argc) {
|
||||||
// Utiliser un switch serait sans doute plus élégant
|
// Utiliser un switch serait sans doute plus élégant
|
||||||
@ -429,6 +485,9 @@ int main(int argc, char* argv[]) {
|
|||||||
} else if ((! strcmp(argv[i], "--start"))||(! strcmp(argv[i], "-s"))) {
|
} else if ((! strcmp(argv[i], "--start"))||(! strcmp(argv[i], "-s"))) {
|
||||||
start = strtol(argv[i+1], NULL, 10);
|
start = strtol(argv[i+1], NULL, 10);
|
||||||
i += 2;
|
i += 2;
|
||||||
|
} else if (! strcmp(argv[i], "--offset")) {
|
||||||
|
offset = true;
|
||||||
|
i++;
|
||||||
} else {
|
} else {
|
||||||
printf("%s : Argument non reconnu\n", argv[i]);
|
printf("%s : Argument non reconnu\n", argv[i]);
|
||||||
i++;
|
i++;
|
||||||
@ -446,8 +505,8 @@ int main(int argc, char* argv[]) {
|
|||||||
printf("Pas de fichier de sortie spécifié, default: out.bin\n");
|
printf("Pas de fichier de sortie spécifié, default: out.bin\n");
|
||||||
out = "out.bin";
|
out = "out.bin";
|
||||||
}
|
}
|
||||||
// Entraînement en sourçant neural_network.c
|
// Entraînement (dans neural_network.c)
|
||||||
train(epochs, recovery, images, labels, out, delta, nb_images, start);
|
train(epochs, recovery, images, labels, out, delta, nb_images, start, offset);
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
if (! strcmp(argv[1], "recognize")) {
|
if (! strcmp(argv[1], "recognize")) {
|
||||||
@ -481,7 +540,7 @@ int main(int argc, char* argv[]) {
|
|||||||
if (! out) {
|
if (! out) {
|
||||||
out = "text";
|
out = "text";
|
||||||
}
|
}
|
||||||
print_recognize(modele, in, out);
|
print_recognize(modele, in, out, false);
|
||||||
// Reconnaissance puis affichage des données sous le format spécifié
|
// Reconnaissance puis affichage des données sous le format spécifié
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
@ -490,6 +549,7 @@ int main(int argc, char* argv[]) {
|
|||||||
char* images = NULL;
|
char* images = NULL;
|
||||||
char* labels = NULL;
|
char* labels = NULL;
|
||||||
bool preview_fails = false;
|
bool preview_fails = false;
|
||||||
|
bool offset = false;
|
||||||
int i = 2;
|
int i = 2;
|
||||||
while (i < argc) {
|
while (i < argc) {
|
||||||
if ((! strcmp(argv[i], "--images"))||(! strcmp(argv[i], "-i"))) {
|
if ((! strcmp(argv[i], "--images"))||(! strcmp(argv[i], "-i"))) {
|
||||||
@ -504,9 +564,15 @@ int main(int argc, char* argv[]) {
|
|||||||
} else if ((! strcmp(argv[i], "--preview-fails"))||(! strcmp(argv[i], "-p"))) {
|
} else if ((! strcmp(argv[i], "--preview-fails"))||(! strcmp(argv[i], "-p"))) {
|
||||||
preview_fails = true;
|
preview_fails = true;
|
||||||
i++;
|
i++;
|
||||||
|
} else if (! strcmp(argv[i], "--offset")) {
|
||||||
|
offset = true;
|
||||||
|
i++;
|
||||||
|
} else {
|
||||||
|
printf("%s : Argument non reconnu\n", argv[i]);
|
||||||
|
i++;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
test(modele, images, labels, preview_fails);
|
test(modele, images, labels, preview_fails, offset);
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
printf("Option choisie non reconnue: %s\n", argv[1]);
|
printf("Option choisie non reconnue: %s\n", argv[1]);
|
||||||
|
Loading…
Reference in New Issue
Block a user