Change bias implementation to fix keras's one

This commit is contained in:
julienChemillier 2023-03-12 11:13:26 +01:00
parent fa7d8b2dbc
commit 2a88621c34
14 changed files with 53 additions and 89 deletions

View File

@ -146,10 +146,11 @@ void backward_linearisation(Kernel_nn* ker, float*** input, float*** input_z, fl
void backward_convolution(Kernel_cnn* ker, float*** input, float*** input_z, float*** output, int depth_input, int dim_input, int depth_output, int dim_output, ptr d_function, int is_first) { void backward_convolution(Kernel_cnn* ker, float*** input, float*** input_z, float*** output, int depth_input, int dim_input, int depth_output, int dim_output, ptr d_function, int is_first) {
// Bias // Bias
int n = dim_output*dim_output;
for (int i=0; i < depth_output; i++) { for (int i=0; i < depth_output; i++) {
for (int j=0; j < dim_output; j++) { for (int j=0; j < dim_output; j++) {
for (int k=0; k < dim_output; k++) { for (int k=0; k < dim_output; k++) {
ker->d_bias[i][j][k] += output[i][j][k]; ker->d_bias[i] += output[i][j][k]/n;
} }
} }
} }

View File

@ -20,7 +20,7 @@ void make_convolution_cpu(Kernel_cnn* kernel, float*** input, float*** output, i
for (int i=0; i < kernel->columns; i++) { // filtre for (int i=0; i < kernel->columns; i++) { // filtre
for (int j=0; j < output_dim; j++) { // ligne de sortie for (int j=0; j < output_dim; j++) { // ligne de sortie
for (int k=0; k < output_dim; k++) { // colonne de sortie for (int k=0; k < output_dim; k++) { // colonne de sortie
f = kernel->bias[i][j][k]; f = kernel->bias[i];
for (int a=0; a < kernel->rows; a++) { // Canal de couleur for (int a=0; a < kernel->rows; a++) { // Canal de couleur
for (int b=0; b < kernel->k_size; b++) { // ligne du filtre for (int b=0; b < kernel->k_size; b++) { // ligne du filtre
for (int c=0; c < kernel->k_size; c++) { // colonne du filtre for (int c=0; c < kernel->k_size; c++) { // colonne du filtre
@ -46,7 +46,7 @@ __global__ void make_convolution_kernel(Kernel_cnn* kernel, float*** input, floa
return; return;
} }
float f = kernel->bias[idx][idy][idz]; float f = kernel->bias[idx];
for (int a=0; a < kernel->rows; a++) { for (int a=0; a < kernel->rows; a++) {
for (int b=0; b < kernel->k_size; b++) { for (int b=0; b < kernel->k_size; b++) {

View File

@ -20,7 +20,7 @@ void make_convolution_cpu(Kernel_cnn* kernel, float*** input, float*** output, i
for (int i=0; i < kernel->columns; i++) { // filtre for (int i=0; i < kernel->columns; i++) { // filtre
for (int j=0; j < output_dim; j++) { // ligne de sortie for (int j=0; j < output_dim; j++) { // ligne de sortie
for (int k=0; k < output_dim; k++) { // colonne de sortie for (int k=0; k < output_dim; k++) { // colonne de sortie
f = kernel->bias[i][j][k]; f = kernel->bias[i];
for (int a=0; a < kernel->rows; a++) { // Canal de couleur for (int a=0; a < kernel->rows; a++) { // Canal de couleur
for (int b=0; b < kernel->k_size; b++) { // ligne du filtre for (int b=0; b < kernel->k_size; b++) { // ligne du filtre
for (int c=0; c < kernel->k_size; c++) { // colonne du filtre for (int c=0; c < kernel->k_size; c++) { // colonne du filtre
@ -46,7 +46,7 @@ __global__ void make_convolution_kernel(Kernel_cnn* kernel, float*** input, floa
return; return;
} }
float f = kernel->bias[idx][idy][idz]; float f = kernel->bias[idx];
for (int a=0; a < kernel->rows; a++) { for (int a=0; a < kernel->rows; a++) {
for (int b=0; b < kernel->k_size; b++) { for (int b=0; b < kernel->k_size; b++) {

View File

@ -181,22 +181,14 @@ void add_convolution(Network* network, int depth_output, int dim_output, int act
} }
} }
} }
cnn->bias = (float***)nalloc(depth_output, sizeof(float**)); cnn->bias = (float*)nalloc(depth_output, sizeof(float));
cnn->d_bias = (float***)nalloc(depth_output, sizeof(float**)); cnn->d_bias = (float*)nalloc(depth_output, sizeof(float));
for (int i=0; i < depth_output; i++) { for (int i=0; i < depth_output; i++) {
cnn->bias[i] = (float**)nalloc(bias_size, sizeof(float*)); cnn->d_bias[i] = 0;
cnn->d_bias[i] = (float**)nalloc(bias_size, sizeof(float*));
for (int j=0; j < bias_size; j++) {
cnn->bias[i][j] = (float*)nalloc(bias_size, sizeof(float));
cnn->d_bias[i][j] = (float*)nalloc(bias_size, sizeof(float));
for (int k=0; k < bias_size; k++) {
cnn->d_bias[i][j][k] = 0.;
} }
} int n_in = kernel_size*kernel_size;
}
int n_in = network->width[n-1]*network->width[n-1]*network->depth[n-1];
int n_out = network->width[n]*network->width[n]*network->depth[n]; int n_out = network->width[n]*network->width[n]*network->depth[n];
initialisation_3d_matrix(network->initialisation, cnn->bias, depth_output, dim_output, dim_output, n_in, n_out); initialisation_1d_matrix(network->initialisation, cnn->bias, depth_output, n_in, n_out);
initialisation_4d_matrix(network->initialisation, cnn->weights, depth_input, depth_output, kernel_size, kernel_size, n_in, n_out); initialisation_4d_matrix(network->initialisation, cnn->weights, depth_input, depth_output, kernel_size, kernel_size, n_in, n_out);
create_a_cube_input_layer(network, n, depth_output, bias_size); create_a_cube_input_layer(network, n, depth_output, bias_size);
create_a_cube_input_z_layer(network, n, depth_output, bias_size); create_a_cube_input_z_layer(network, n, depth_output, bias_size);

View File

@ -36,16 +36,7 @@ void free_convolution(Network* network, int pos) {
int c = k_pos->columns; int c = k_pos->columns;
int k_size = k_pos->k_size; int k_size = k_pos->k_size;
int r = k_pos->rows; int r = k_pos->rows;
int bias_size = network->width[pos+1]; // Not sure of the value
free_a_cube_input_layer(network, pos+1, network->depth[pos+1], network->width[pos+1]); free_a_cube_input_layer(network, pos+1, network->depth[pos+1], network->width[pos+1]);
for (int i=0; i < c; i++) {
for (int j=0; j < bias_size; j++) {
gree(k_pos->bias[i][j]);
gree(k_pos->d_bias[i][j]);
}
gree(k_pos->bias[i]);
gree(k_pos->d_bias[i]);
}
gree(k_pos->bias); gree(k_pos->bias);
gree(k_pos->d_bias); gree(k_pos->d_bias);

View File

@ -25,7 +25,8 @@ void write_image_in_network_32(int** image, int height, int width, float** input
void write_image_in_network_260(unsigned char* image, int height, int width, float*** input); void write_image_in_network_260(unsigned char* image, int height, int width, float*** input);
/* /*
* Propage en avant le cnn * Propage en avant le cnn. Le dropout est actif que si le réseau est en phase d'apprentissage.
*
*/ */
void forward_propagation(Network* network); void forward_propagation(Network* network);

View File

@ -9,7 +9,7 @@ void make_convolution_cpu(Kernel_cnn* kernel, float*** input, float*** output, i
/* /*
* Kernel de la convolution sur carte graphique * Kernel de la convolution sur carte graphique
*/ */
__global__ void make_convolution_kernel(int k_size, int columns, int rows, float*** bias, size_t pitch_bias, float**** weights, size_t pitch_weights, float*** input, size_t pitch_input, float*** output, size_t pitch_output, int output_dim); __global__ void make_convolution_kernel(int k_size, int columns, int rows, float* bias, size_t pitch_bias, float**** weights, size_t pitch_weights, float*** input, size_t pitch_input, float*** output, size_t pitch_output, int output_dim);
/* /*
* Effectue la convolution naïvement sur la carte graphique * Effectue la convolution naïvement sur la carte graphique

View File

@ -13,8 +13,8 @@ typedef struct Kernel_cnn {
int k_size; // k_size = dim_input - dim_output + 1 int k_size; // k_size = dim_input - dim_output + 1
int rows; // Depth de l'input int rows; // Depth de l'input
int columns; // Depth de l'output int columns; // Depth de l'output
float*** bias; // bias[columns][dim_output][dim_output] float* bias; // bias[columns]
float*** d_bias; // d_bias[columns][dim_output][dim_output] float* d_bias; // d_bias[columns]
float**** weights; // weights[rows][columns][k_size][k_size] float**** weights; // weights[rows][columns][k_size][k_size]
float**** d_weights; // d_weights[rows][columns][k_size][k_size] float**** d_weights; // d_weights[rows][columns][k_size][k_size]
} Kernel_cnn; } Kernel_cnn;

View File

@ -91,7 +91,7 @@ void write_couche(Network* network, int indice_couche, int type_couche, FILE* pt
float buffer[output_dim*output_dim]; float buffer[output_dim*output_dim];
for (int j=0; j < output_dim; j++) { for (int j=0; j < output_dim; j++) {
for (int k=0; k < output_dim; k++) { for (int k=0; k < output_dim; k++) {
bufferAdd(cnn->bias[i][j][k]); bufferAdd(cnn->bias[i]);
} }
} }
fwrite(buffer, sizeof(buffer), 1, ptr); fwrite(buffer, sizeof(buffer), 1, ptr);
@ -247,18 +247,14 @@ Kernel* read_kernel(int type_couche, int output_dim, FILE* ptr) {
Kernel_cnn* cnn = kernel->cnn; Kernel_cnn* cnn = kernel->cnn;
float tmp; float tmp;
cnn->bias = (float***)nalloc(cnn->columns, sizeof(float**)); cnn->bias = (float*)nalloc(cnn->columns, sizeof(float));
cnn->d_bias = (float***)nalloc(cnn->columns, sizeof(float**)); cnn->d_bias = (float*)nalloc(cnn->columns, sizeof(float));
for (int i=0; i < cnn->columns; i++) { for (int i=0; i < cnn->columns; i++) {
cnn->bias[i] = (float**)nalloc(output_dim, sizeof(float*));
cnn->d_bias[i] = (float**)nalloc(output_dim, sizeof(float*));
for (int j=0; j < output_dim; j++) { for (int j=0; j < output_dim; j++) {
cnn->bias[i][j] = (float*)nalloc(output_dim, sizeof(float));
cnn->d_bias[i][j] = (float*)nalloc(output_dim, sizeof(float));
for (int k=0; k < output_dim; k++) { for (int k=0; k < output_dim; k++) {
(void) !fread(&tmp, sizeof(tmp), 1, ptr); (void) !fread(&tmp, sizeof(tmp), 1, ptr);
cnn->bias[i][j][k] = tmp; cnn->bias[i] = tmp;
cnn->d_bias[i][j][k] = 0.; cnn->d_bias[i] = 0.;
} }
} }
} }

View File

@ -18,7 +18,7 @@ void print_kernel_cnn(Kernel_cnn* ker, int depth_input, int dim_input, int depth
for (int i=0; i<depth_output; i++) { for (int i=0; i<depth_output; i++) {
for (int j=0; j<dim_output; j++) { for (int j=0; j<dim_output; j++) {
for (int k=0; k<dim_output; k++) { for (int k=0; k<dim_output; k++) {
printf("%.2f", ker->bias[i][j][k]); printf("%.2f", ker->bias[i]);
} }
print_space; print_space;
} }

View File

@ -87,14 +87,9 @@ void update_bias(Network* network, Network* d_network) {
Kernel_cnn* d_cnn = dk_i->cnn; Kernel_cnn* d_cnn = dk_i->cnn;
for (int a=0; a < output_depth; a++) { for (int a=0; a < output_depth; a++) {
for (int b=0; b < output_width; b++) { cnn->bias[a] -= network->learning_rate * d_cnn->d_bias[a];
for (int c=0; c < output_width; c++) { d_cnn->d_bias[a] = 0;
cnn->bias[a][b][c] -= network->learning_rate * d_cnn->d_bias[a][b][c]; cnn->bias[a] = clip(cnn->bias[a]);
d_cnn->d_bias[a][b][c] = 0;
cnn->bias[a][b][c] = clip(cnn->bias[a][b][c]);
}
}
} }
} else if (k_i->nn) { // Full connection } else if (k_i->nn) { // Full connection
Kernel_nn* nn = k_i->nn; Kernel_nn* nn = k_i->nn;
@ -177,11 +172,7 @@ void reset_d_bias(Network* network) {
Kernel_cnn* cnn = k_i_1->cnn; Kernel_cnn* cnn = k_i_1->cnn;
for (int a=0; a < output_depth; a++) { for (int a=0; a < output_depth; a++) {
for (int b=0; b < output_width; b++) { cnn->d_bias[a] = 0;
for (int c=0; c < output_width; c++) {
cnn->d_bias[a][b][c] = 0;
}
}
} }
} else if (k_i->nn) { // Full connection } else if (k_i->nn) { // Full connection
Kernel_nn* nn = k_i_1->nn; Kernel_nn* nn = k_i_1->nn;

View File

@ -75,7 +75,7 @@ bool equals_networks(Network* network1, Network* network2) {
for (int j=0; j < network1->kernel[i]->cnn->columns; j++) { for (int j=0; j < network1->kernel[i]->cnn->columns; j++) {
for (int k=0; k < output_dim; k++) { for (int k=0; k < output_dim; k++) {
for (int l=0; l < output_dim; l++) { for (int l=0; l < output_dim; l++) {
checkEquals(kernel[i]->cnn->bias[j][k][l], "kernel[i]->cnn->bias[j][k][l]", l); checkEquals(kernel[i]->cnn->bias[j], "kernel[i]->cnn->bias[j][k][l]", j);
} }
} }
} }
@ -83,7 +83,7 @@ bool equals_networks(Network* network1, Network* network2) {
for (int k=0; k < network1->kernel[i]->cnn->columns; k++) { for (int k=0; k < network1->kernel[i]->cnn->columns; k++) {
for (int l=0; l < network1->kernel[i]->cnn->k_size; l++) { for (int l=0; l < network1->kernel[i]->cnn->k_size; l++) {
for (int m=0; m < network1->kernel[i]->cnn->k_size; m++) { for (int m=0; m < network1->kernel[i]->cnn->k_size; m++) {
checkEquals(kernel[i]->cnn->weights[j][k][l][m], "kernel[i]->cnn->bias[j][k][l][m]", m); checkEquals(kernel[i]->cnn->weights[j][k][l][m], "kernel[i]->cnn->weights[j][k][l][m]", m);
} }
} }
} }
@ -182,19 +182,11 @@ Network* copy_network(Network* network) {
copyVar(kernel[i]->cnn->k_size); copyVar(kernel[i]->cnn->k_size);
copyVar(kernel[i]->cnn->columns); copyVar(kernel[i]->cnn->columns);
network_cp->kernel[i]->cnn->bias = (float***)nalloc(columns, sizeof(float**)); network_cp->kernel[i]->cnn->bias = (float*)nalloc(columns, sizeof(float));
network_cp->kernel[i]->cnn->d_bias = (float***)nalloc(columns, sizeof(float**)); network_cp->kernel[i]->cnn->d_bias = (float*)nalloc(columns, sizeof(float));
for (int j=0; j < columns; j++) { for (int j=0; j < columns; j++) {
network_cp->kernel[i]->cnn->bias[j] = (float**)nalloc(output_dim, sizeof(float*)); copyVar(kernel[i]->cnn->bias[j]);
network_cp->kernel[i]->cnn->d_bias[j] = (float**)nalloc(output_dim, sizeof(float*)); network_cp->kernel[i]->cnn->d_bias[j] = 0.;
for (int k=0; k < output_dim; k++) {
network_cp->kernel[i]->cnn->bias[j][k] = (float*)nalloc(output_dim, sizeof(float));
network_cp->kernel[i]->cnn->d_bias[j][k] = (float*)nalloc(output_dim, sizeof(float));
for (int l=0; l < output_dim; l++) {
copyVar(kernel[i]->cnn->bias[j][k][l]);
network_cp->kernel[i]->cnn->d_bias[j][k][l] = 0.;
}
}
} }
network_cp->kernel[i]->cnn->weights = (float****)nalloc(rows, sizeof(float***)); network_cp->kernel[i]->cnn->weights = (float****)nalloc(rows, sizeof(float***));
@ -287,11 +279,7 @@ void copy_network_parameters(Network* network_src, Network* network_dest) {
output_dim = network_src->width[i+1]; output_dim = network_src->width[i+1];
for (int j=0; j < columns; j++) { for (int j=0; j < columns; j++) {
for (int k=0; k < output_dim; k++) { copyVarParams(kernel[i]->cnn->bias[j]);
for (int l=0; l < output_dim; l++) {
copyVarParams(kernel[i]->cnn->bias[j][k][l]);
}
}
} }
for (int j=0; j < rows; j++) { for (int j=0; j < rows; j++) {
for (int k=0; k < columns; k++) { for (int k=0; k < columns; k++) {
@ -346,11 +334,7 @@ int count_null_weights(Network* network) {
output_dim = network->width[i+1]; output_dim = network->width[i+1];
for (int j=0; j < columns; j++) { for (int j=0; j < columns; j++) {
for (int k=0; k < output_dim; k++) { null_bias += fabs(network->kernel[i]->cnn->bias[j]) <= epsilon;
for (int l=0; l < output_dim; l++) {
null_bias += fabs(network->kernel[i]->cnn->bias[j][k][l]) <= epsilon;
}
}
} }
for (int j=0; j < rows; j++) { for (int j=0; j < rows; j++) {
for (int k=0; k < columns; k++) { for (int k=0; k < columns; k++) {

View File

@ -111,9 +111,13 @@ void run_convolution_test(int input_dim, int output_dim, int rows, int columns)
kernel->rows = rows; kernel->rows = rows;
kernel->columns = columns; kernel->columns = columns;
// bias[kernel->columns][dim_output][dim_output] // bias[kernel->columns]
kernel->bias = create_matrix(kernel->columns, output_dim, output_dim, 15.0f); kernel->bias = (float*)malloc(kernel->columns, sizeof(float));
kernel->d_bias = create_matrix(kernel->columns, output_dim, output_dim, 1.5f); kernel->d_bias = (float*)malloc(kernel->columns, sizeof(float));
for (int i=0; i<kernel->columns; i++) {
kernel->bias[i] = random_float(0.0f, 15.0f);
kernel->d_bias[i] = random_float(0.0f, 1.5f);
}
// weights[rows][columns][k_size][k_size] // weights[rows][columns][k_size][k_size]
kernel->weights = (float****)malloc(sizeof(float***)*kernel->rows); kernel->weights = (float****)malloc(sizeof(float***)*kernel->rows);
@ -156,8 +160,8 @@ void run_convolution_test(int input_dim, int output_dim, int rows, int columns)
} }
//printf(GREEN "OK\n" RESET); //printf(GREEN "OK\n" RESET);
free_matrix(kernel->bias, kernel->columns, output_dim); free(kernel->bias);
free_matrix(kernel->d_bias, kernel->columns, output_dim); free(kernel->d_bias);
for (int i=0; i < kernel->rows; i++) { for (int i=0; i < kernel->rows; i++) {
free_matrix(kernel->weights[i], kernel->columns, kernel->k_size); free_matrix(kernel->weights[i], kernel->columns, kernel->k_size);

View File

@ -104,9 +104,13 @@ void run_convolution_test(int input_dim, int output_dim, int rows, int columns)
kernel->rows = rows; kernel->rows = rows;
kernel->columns = columns; kernel->columns = columns;
// bias[kernel->columns][dim_output][dim_output] // bias[kernel->columns]
kernel->bias = create_matrix(kernel->columns, output_dim, output_dim, 15.0f); kernel->bias = (float*)nalloc(kernel->columns, sizeof(float));
kernel->d_bias = create_matrix(kernel->columns, output_dim, output_dim, 1.5f); kernel->d_bias = (float*)nalloc(kernel->columns, sizeof(float));
for (int i=0; i<kernel->columns; i++) {
kernel->bias[i] = random_float(0.0f, 15.0f);
kernel->d_bias[i] = random_float(0.0f, 1.5f);
}
// weights[rows][columns][k_size][k_size] // weights[rows][columns][k_size][k_size]
kernel->weights = (float****)nalloc(kernel->rows, sizeof(float***)); kernel->weights = (float****)nalloc(kernel->rows, sizeof(float***));
@ -150,8 +154,8 @@ void run_convolution_test(int input_dim, int output_dim, int rows, int columns)
} }
printf(GREEN "OK\n" RESET); printf(GREEN "OK\n" RESET);
free_matrix(kernel->bias, kernel->columns, output_dim); gree(kernel->bias);
free_matrix(kernel->d_bias, kernel->columns, output_dim); gree(kernel->d_bias);
for (int i=0; i < kernel->rows; i++) { for (int i=0; i < kernel->rows; i++) {
free_matrix(kernel->weights[i], kernel->columns, kernel->k_size); free_matrix(kernel->weights[i], kernel->columns, kernel->k_size);