diff --git a/doc/cnn/2d_pooling_layer.png b/doc/cnn/2d_pooling_layer.png
new file mode 100644
index 0000000..9d90095
Binary files /dev/null and b/doc/cnn/2d_pooling_layer.png differ
diff --git a/doc/cnn/backpropagation_explaination.md b/doc/cnn/backpropagation_explaination.md
new file mode 100644
index 0000000..cb1c2e8
--- /dev/null
+++ b/doc/cnn/backpropagation_explaination.md
@@ -0,0 +1,58 @@
+# Explaination of the calculus of the backpropagation for the different layers
+
+## Backpropagation of the softmax
+
+
+
+Valeur des variables:
+- $l_1 = \dfrac{e^{a_1}}{e^{a_1}+e^{a_2}+e^{a_3}}$
+$l_2 = \dfrac{e^{a_2}}{e^{a_1}+e^{a_2}+e^{a_3}}$
+$l_3 = \dfrac{e^{a_3}}{e^{a_1}+e^{a_2}+e^{a_3}}$
+$E = \dfrac{1}{2}((l_1-o_1)^2+(l_2-o_2)^2+(l_3-o_3)^2)$
+- $\dfrac{\partial E}{\partial l1} = o_1 - l_1$
+$\dfrac{\partial E}{\partial l2} = o_2 - l_2$
+$\dfrac{\partial E}{\partial l3} = o_3 - l_3$
+- $\dfrac{\partial l_1}{\partial a_1} = l_1(1-l_1)$
+$\dfrac{\partial E}{\partial a_1} = \dfrac{\partial E}{\partial l_1} \dfrac{\partial l_1}{\partial a_1} = (o_1-l_1)l_1(1-l_1)$
+
+> Derivatives:
+$\dfrac{\partial E}{\partial a_i} = \dfrac{\partial E}{\partial l_i} \dfrac{\partial l_i}{\partial a_i} = (o_i-l_i)l_1(1-l_i)$
+$\dfrac{\partial E}{\partial b_i} = \dfrac{\partial E}{\partial a_i}$
+
+---
+---
+
+## Backpropagation of a fully connected layer
+
+
+
+Soit f la fonction d'activation de la première couche et g la fonction d'activation de la deuxième couche.
+- $d_1 =g(c_1)$
+$d_2 = g(c2)$
+$c_1 = w_{11}l_1 + w_{21}l_2 + w_{31}l_3 + b'_1$
+$c_2 = w_{12}l_1 + w_{22}l_2 + w_{32}l_3 + b'_2$
+$l_1 = f(a_1)$
+$l_2 = f(a_2)$
+$l_3 = f(a_3)$
+- $\dfrac{\partial E}{\partial a_1} = \dfrac{\partial E_{c_1}}{\partial c_1} \dfrac{\partial c_1}{\partial l_1} \dfrac{\partial l_1}{\partial a_1} + \dfrac{\partial E_{c_2}}{\partial c_2} \dfrac{\partial c_2}{\partial l_1} \dfrac{\partial l_1}{\partial a_1}$
+$\dfrac{\partial c_2}{\partial l_1} = w_{12}$
+$\dfrac{\partial c_1}{\partial l_1} = w_{11}$
+$\dfrac{\partial l_1}{\partial a_1} = f'(a_1)$
+
+> Derivatives:
+$\dfrac{\partial E}{\partial b_j} = \dfrac{\partial E}{\partial l_i} $
+$\dfrac{\partial E}{\partial w_{ij}} = \dfrac{\partial E}{\partial c_j}l_i$
+$\dfrac{\partial E}{\partial a_i} = \dfrac{\partial E_{c_1}}{\partial c_1} w_{i1} + \dfrac{\partial E_{c_2}}{\partial c_2} w_{i2}$
+---
+---
+
+## Backpropagation of an average 2d pooling layer
+
+
+
+$\forall i,j: \space b_{i j} = \dfrac{a_{2i \space 2j} + a_{2i+1 \space 2j} + a_{2i \space 2j+1} + a_{2i+1 \space 2j+1}}{4}$
+
+> Derivatives:
+$\forall i,j: \space \dfrac{\partial E}{\partial a_{i \space j}} = \dfrac{1}{4} \dfrac{\partial E}{\partial b_{k \space l}} $
+where k = i//2 and l = j//2
+
diff --git a/doc/cnn/fully_connected.png b/doc/cnn/fully_connected.png
new file mode 100644
index 0000000..9f795fd
Binary files /dev/null and b/doc/cnn/fully_connected.png differ
diff --git a/doc/cnn/last_layer.png b/doc/cnn/last_layer.png
new file mode 100644
index 0000000..3ecb30a
Binary files /dev/null and b/doc/cnn/last_layer.png differ