mirror of
https://github.com/augustin64/projet-tipe
synced 2025-01-23 07:06:25 +01:00
Back to multiple bias implementation
This commit is contained in:
parent
00ac29b1d0
commit
1bd92074ab
@ -146,11 +146,10 @@ void backward_linearisation(Kernel_nn* ker, float*** input, float*** input_z, fl
|
||||
|
||||
void backward_convolution(Kernel_cnn* ker, float*** input, float*** input_z, float*** output, int depth_input, int dim_input, int depth_output, int dim_output, ptr d_function, int is_first) {
|
||||
// Bias
|
||||
int n = dim_output*dim_output;
|
||||
for (int i=0; i < depth_output; i++) {
|
||||
for (int j=0; j < dim_output; j++) {
|
||||
for (int k=0; k < dim_output; k++) {
|
||||
ker->d_bias[i] += output[i][j][k]/n;
|
||||
ker->d_bias[i][j][k] += output[i][j][k];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -20,7 +20,7 @@ void make_convolution_cpu(Kernel_cnn* kernel, float*** input, float*** output, i
|
||||
for (int i=0; i < kernel->columns; i++) { // filtre
|
||||
for (int j=0; j < output_dim; j++) { // ligne de sortie
|
||||
for (int k=0; k < output_dim; k++) { // colonne de sortie
|
||||
f = kernel->bias[i];
|
||||
f = kernel->bias[i][j][k];
|
||||
for (int a=0; a < kernel->rows; a++) { // Canal de couleur
|
||||
for (int b=0; b < kernel->k_size; b++) { // ligne du filtre
|
||||
for (int c=0; c < kernel->k_size; c++) { // colonne du filtre
|
||||
@ -46,7 +46,7 @@ __global__ void make_convolution_kernel(Kernel_cnn* kernel, float*** input, floa
|
||||
return;
|
||||
}
|
||||
|
||||
float f = kernel->bias[idx];
|
||||
float f = kernel->bias[idx][idy][idz];
|
||||
|
||||
for (int a=0; a < kernel->rows; a++) {
|
||||
for (int b=0; b < kernel->k_size; b++) {
|
||||
|
@ -20,7 +20,7 @@ void make_convolution_cpu(Kernel_cnn* kernel, float*** input, float*** output, i
|
||||
for (int i=0; i < kernel->columns; i++) { // filtre
|
||||
for (int j=0; j < output_dim; j++) { // ligne de sortie
|
||||
for (int k=0; k < output_dim; k++) { // colonne de sortie
|
||||
f = kernel->bias[i];
|
||||
f = kernel->bias[i][j][k];
|
||||
for (int a=0; a < kernel->rows; a++) { // Canal de couleur
|
||||
for (int b=0; b < kernel->k_size; b++) { // ligne du filtre
|
||||
for (int c=0; c < kernel->k_size; c++) { // colonne du filtre
|
||||
@ -46,7 +46,7 @@ __global__ void make_convolution_kernel(Kernel_cnn* kernel, float*** input, floa
|
||||
return;
|
||||
}
|
||||
|
||||
float f = kernel->bias[idx];
|
||||
float f = kernel->bias[idx][idy][idz];
|
||||
|
||||
for (int a=0; a < kernel->rows; a++) {
|
||||
for (int b=0; b < kernel->k_size; b++) {
|
||||
|
@ -180,14 +180,22 @@ void add_convolution(Network* network, int depth_output, int dim_output, int act
|
||||
}
|
||||
}
|
||||
}
|
||||
cnn->bias = (float*)nalloc(depth_output, sizeof(float));
|
||||
cnn->d_bias = (float*)nalloc(depth_output, sizeof(float));
|
||||
cnn->bias = (float***)nalloc(depth_output, sizeof(float**));
|
||||
cnn->d_bias = (float***)nalloc(depth_output, sizeof(float**));
|
||||
for (int i=0; i < depth_output; i++) {
|
||||
cnn->d_bias[i] = 0;
|
||||
cnn->bias[i] = (float**)nalloc(bias_size, sizeof(float*));
|
||||
cnn->d_bias[i] = (float**)nalloc(bias_size, sizeof(float*));
|
||||
for (int j=0; j < bias_size; j++) {
|
||||
cnn->bias[i][j] = (float*)nalloc(bias_size, sizeof(float));
|
||||
cnn->d_bias[i][j] = (float*)nalloc(bias_size, sizeof(float));
|
||||
for (int k=0; k < bias_size; k++) {
|
||||
cnn->d_bias[i][j][k] = 0.;
|
||||
}
|
||||
}
|
||||
}
|
||||
int n_in = kernel_size*kernel_size;
|
||||
int n_in = network->width[n-1]*network->width[n-1]*network->depth[n-1];
|
||||
int n_out = network->width[n]*network->width[n]*network->depth[n];
|
||||
initialisation_1d_matrix(network->initialisation, cnn->bias, depth_output, n_in, n_out);
|
||||
initialisation_3d_matrix(network->initialisation, cnn->bias, depth_output, dim_output, dim_output, n_in, n_out);
|
||||
initialisation_4d_matrix(network->initialisation, cnn->weights, depth_input, depth_output, kernel_size, kernel_size, n_in, n_out);
|
||||
create_a_cube_input_layer(network, n, depth_output, bias_size);
|
||||
create_a_cube_input_z_layer(network, n, depth_output, bias_size);
|
||||
|
@ -36,7 +36,16 @@ void free_convolution(Network* network, int pos) {
|
||||
int c = k_pos->columns;
|
||||
int k_size = k_pos->k_size;
|
||||
int r = k_pos->rows;
|
||||
int bias_size = network->width[pos+1]; // Not sure of the value
|
||||
free_a_cube_input_layer(network, pos+1, network->depth[pos+1], network->width[pos+1]);
|
||||
for (int i=0; i < c; i++) {
|
||||
for (int j=0; j < bias_size; j++) {
|
||||
gree(k_pos->bias[i][j]);
|
||||
gree(k_pos->d_bias[i][j]);
|
||||
}
|
||||
gree(k_pos->bias[i]);
|
||||
gree(k_pos->d_bias[i]);
|
||||
}
|
||||
gree(k_pos->bias);
|
||||
gree(k_pos->d_bias);
|
||||
|
||||
|
@ -13,8 +13,8 @@ typedef struct Kernel_cnn {
|
||||
int k_size; // k_size = dim_input - dim_output + 1
|
||||
int rows; // Depth de l'input
|
||||
int columns; // Depth de l'output
|
||||
float* bias; // bias[columns]
|
||||
float* d_bias; // d_bias[columns]
|
||||
float*** bias; // bias[columns][dim_output][dim_output]
|
||||
float*** d_bias; // d_bias[columns][dim_output][dim_output]
|
||||
float**** weights; // weights[rows][columns][k_size][k_size]
|
||||
float**** d_weights; // d_weights[rows][columns][k_size][k_size]
|
||||
} Kernel_cnn;
|
||||
|
@ -91,7 +91,7 @@ void write_couche(Network* network, int indice_couche, int type_couche, FILE* pt
|
||||
float buffer[output_dim*output_dim];
|
||||
for (int j=0; j < output_dim; j++) {
|
||||
for (int k=0; k < output_dim; k++) {
|
||||
bufferAdd(cnn->bias[i]);
|
||||
bufferAdd(cnn->bias[i][j][k]);
|
||||
}
|
||||
}
|
||||
fwrite(buffer, sizeof(buffer), 1, ptr);
|
||||
@ -247,14 +247,18 @@ Kernel* read_kernel(int type_couche, int output_dim, FILE* ptr) {
|
||||
Kernel_cnn* cnn = kernel->cnn;
|
||||
float tmp;
|
||||
|
||||
cnn->bias = (float*)nalloc(cnn->columns, sizeof(float));
|
||||
cnn->d_bias = (float*)nalloc(cnn->columns, sizeof(float));
|
||||
cnn->bias = (float***)nalloc(cnn->columns, sizeof(float**));
|
||||
cnn->d_bias = (float***)nalloc(cnn->columns, sizeof(float**));
|
||||
for (int i=0; i < cnn->columns; i++) {
|
||||
cnn->bias[i] = (float**)nalloc(output_dim, sizeof(float*));
|
||||
cnn->d_bias[i] = (float**)nalloc(output_dim, sizeof(float*));
|
||||
for (int j=0; j < output_dim; j++) {
|
||||
cnn->bias[i][j] = (float*)nalloc(output_dim, sizeof(float));
|
||||
cnn->d_bias[i][j] = (float*)nalloc(output_dim, sizeof(float));
|
||||
for (int k=0; k < output_dim; k++) {
|
||||
(void) !fread(&tmp, sizeof(tmp), 1, ptr);
|
||||
cnn->bias[i] = tmp;
|
||||
cnn->d_bias[i] = 0.;
|
||||
cnn->bias[i][j][k] = tmp;
|
||||
cnn->d_bias[i][j][k] = 0.;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -18,7 +18,7 @@ void print_kernel_cnn(Kernel_cnn* ker, int depth_input, int dim_input, int depth
|
||||
for (int i=0; i<depth_output; i++) {
|
||||
for (int j=0; j<dim_output; j++) {
|
||||
for (int k=0; k<dim_output; k++) {
|
||||
printf("%.2f", ker->bias[i]);
|
||||
printf("%.2f", ker->bias[i][j][k]);
|
||||
}
|
||||
print_space;
|
||||
}
|
||||
|
@ -348,7 +348,7 @@ void train(int dataset_type, char* images_file, char* labels_file, char* data_di
|
||||
#endif
|
||||
write_network(out, network);
|
||||
// If you want to test the network between each epoch, uncomment the following line:
|
||||
//test_network(0, out, "data/mnist/t10k-images-idx3-ubyte", "data/mnist/t10k-labels-idx1-ubyte", NULL, false);
|
||||
test_network(0, out, "data/mnist/t10k-images-idx3-ubyte", "data/mnist/t10k-labels-idx1-ubyte", NULL, false);
|
||||
|
||||
// Learning Rate decay
|
||||
network->learning_rate -= LEARNING_RATE*(1./(float)(epochs+1));
|
||||
|
@ -87,9 +87,14 @@ void update_bias(Network* network, Network* d_network) {
|
||||
Kernel_cnn* d_cnn = dk_i->cnn;
|
||||
|
||||
for (int a=0; a < output_depth; a++) {
|
||||
cnn->bias[a] -= network->learning_rate * d_cnn->d_bias[a];
|
||||
d_cnn->d_bias[a] = 0;
|
||||
cnn->bias[a] = clip(cnn->bias[a]);
|
||||
for (int b=0; b < output_width; b++) {
|
||||
for (int c=0; c < output_width; c++) {
|
||||
cnn->bias[a][b][c] -= network->learning_rate * d_cnn->d_bias[a][b][c];
|
||||
d_cnn->d_bias[a][b][c] = 0;
|
||||
|
||||
cnn->bias[a][b][c] = clip(cnn->bias[a][b][c]);
|
||||
}
|
||||
}
|
||||
}
|
||||
} else if (k_i->nn) { // Full connection
|
||||
Kernel_nn* nn = k_i->nn;
|
||||
@ -172,7 +177,11 @@ void reset_d_bias(Network* network) {
|
||||
Kernel_cnn* cnn = k_i_1->cnn;
|
||||
|
||||
for (int a=0; a < output_depth; a++) {
|
||||
cnn->d_bias[a] = 0;
|
||||
for (int b=0; b < output_width; b++) {
|
||||
for (int c=0; c < output_width; c++) {
|
||||
cnn->d_bias[a][b][c] = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
} else if (k_i->nn) { // Full connection
|
||||
Kernel_nn* nn = k_i_1->nn;
|
||||
|
@ -33,6 +33,7 @@ void knuth_shuffle(int* tab, int n) {
|
||||
}
|
||||
|
||||
bool equals_networks(Network* network1, Network* network2) {
|
||||
int output_dim;
|
||||
checkEquals(size, "size", -1);
|
||||
checkEquals(initialisation, "initialisation", -1);
|
||||
checkEquals(dropout, "dropout", -1);
|
||||
@ -67,17 +68,22 @@ bool equals_networks(Network* network1, Network* network2) {
|
||||
}
|
||||
} else {
|
||||
// Type CNN
|
||||
output_dim = network1->width[i+1];
|
||||
checkEquals(kernel[i]->cnn->k_size, "kernel[i]->k_size", i);
|
||||
checkEquals(kernel[i]->cnn->rows, "kernel[i]->rows", i);
|
||||
checkEquals(kernel[i]->cnn->columns, "kernel[i]->columns", i);
|
||||
for (int j=0; j < network1->kernel[i]->cnn->columns; j++) {
|
||||
checkEquals(kernel[i]->cnn->bias[j], "kernel[i]->cnn->bias[j]", j);
|
||||
for (int k=0; k < output_dim; k++) {
|
||||
for (int l=0; l < output_dim; l++) {
|
||||
checkEquals(kernel[i]->cnn->bias[j][k][l], "kernel[i]->cnn->bias[j][k][l]", l);
|
||||
}
|
||||
}
|
||||
}
|
||||
for (int j=0; j < network1->kernel[i]->cnn->rows; j++) {
|
||||
for (int k=0; k < network1->kernel[i]->cnn->columns; k++) {
|
||||
for (int l=0; l < network1->kernel[i]->cnn->k_size; l++) {
|
||||
for (int m=0; m < network1->kernel[i]->cnn->k_size; m++) {
|
||||
checkEquals(kernel[i]->cnn->weights[j][k][l][m], "kernel[i]->cnn->weights[j][k][l][m]", m);
|
||||
checkEquals(kernel[i]->cnn->weights[j][k][l][m], "kernel[i]->cnn->bias[j][k][l][m]", m);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -100,6 +106,7 @@ Network* copy_network(Network* network) {
|
||||
int rows;
|
||||
int k_size;
|
||||
int columns;
|
||||
int output_dim;
|
||||
|
||||
copyVar(dropout);
|
||||
copyVar(learning_rate);
|
||||
@ -165,6 +172,8 @@ Network* copy_network(Network* network) {
|
||||
rows = network->kernel[i]->cnn->rows;
|
||||
k_size = network->kernel[i]->cnn->k_size;
|
||||
columns = network->kernel[i]->cnn->columns;
|
||||
output_dim = network->width[i+1];
|
||||
|
||||
|
||||
network_cp->kernel[i]->nn = NULL;
|
||||
network_cp->kernel[i]->cnn = (Kernel_cnn*)nalloc(1, sizeof(Kernel_cnn));
|
||||
@ -173,11 +182,19 @@ Network* copy_network(Network* network) {
|
||||
copyVar(kernel[i]->cnn->k_size);
|
||||
copyVar(kernel[i]->cnn->columns);
|
||||
|
||||
network_cp->kernel[i]->cnn->bias = (float*)nalloc(columns, sizeof(float));
|
||||
network_cp->kernel[i]->cnn->d_bias = (float*)nalloc(columns, sizeof(float));
|
||||
network_cp->kernel[i]->cnn->bias = (float***)nalloc(columns, sizeof(float**));
|
||||
network_cp->kernel[i]->cnn->d_bias = (float***)nalloc(columns, sizeof(float**));
|
||||
for (int j=0; j < columns; j++) {
|
||||
copyVar(kernel[i]->cnn->bias[j]);
|
||||
network_cp->kernel[i]->cnn->d_bias[j] = 0.;
|
||||
network_cp->kernel[i]->cnn->bias[j] = (float**)nalloc(output_dim, sizeof(float*));
|
||||
network_cp->kernel[i]->cnn->d_bias[j] = (float**)nalloc(output_dim, sizeof(float*));
|
||||
for (int k=0; k < output_dim; k++) {
|
||||
network_cp->kernel[i]->cnn->bias[j][k] = (float*)nalloc(output_dim, sizeof(float));
|
||||
network_cp->kernel[i]->cnn->d_bias[j][k] = (float*)nalloc(output_dim, sizeof(float));
|
||||
for (int l=0; l < output_dim; l++) {
|
||||
copyVar(kernel[i]->cnn->bias[j][k][l]);
|
||||
network_cp->kernel[i]->cnn->d_bias[j][k][l] = 0.;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
network_cp->kernel[i]->cnn->weights = (float****)nalloc(rows, sizeof(float***));
|
||||
@ -243,6 +260,7 @@ void copy_network_parameters(Network* network_src, Network* network_dest) {
|
||||
int rows;
|
||||
int k_size;
|
||||
int columns;
|
||||
int output_dim;
|
||||
|
||||
copyVarParams(learning_rate);
|
||||
|
||||
@ -266,9 +284,14 @@ void copy_network_parameters(Network* network_src, Network* network_dest) {
|
||||
rows = network_src->kernel[i]->cnn->rows;
|
||||
k_size = network_src->kernel[i]->cnn->k_size;
|
||||
columns = network_src->kernel[i]->cnn->columns;
|
||||
output_dim = network_src->width[i+1];
|
||||
|
||||
for (int j=0; j < columns; j++) {
|
||||
copyVarParams(kernel[i]->cnn->bias[j]);
|
||||
for (int k=0; k < output_dim; k++) {
|
||||
for (int l=0; l < output_dim; l++) {
|
||||
copyVarParams(kernel[i]->cnn->bias[j][k][l]);
|
||||
}
|
||||
}
|
||||
}
|
||||
for (int j=0; j < rows; j++) {
|
||||
for (int k=0; k < columns; k++) {
|
||||
@ -298,6 +321,7 @@ int count_null_weights(Network* network) {
|
||||
int rows;
|
||||
int k_size;
|
||||
int columns;
|
||||
int output_dim;
|
||||
|
||||
for (int i=0; i < size-1; i++) {
|
||||
if (!network->kernel[i]->cnn && network->kernel[i]->nn) { // Cas du NN
|
||||
@ -319,9 +343,14 @@ int count_null_weights(Network* network) {
|
||||
rows = network->kernel[i]->cnn->rows;
|
||||
k_size = network->kernel[i]->cnn->k_size;
|
||||
columns = network->kernel[i]->cnn->columns;
|
||||
output_dim = network->width[i+1];
|
||||
|
||||
for (int j=0; j < columns; j++) {
|
||||
null_bias += fabs(network->kernel[i]->cnn->bias[j]) <= epsilon;
|
||||
for (int k=0; k < output_dim; k++) {
|
||||
for (int l=0; l < output_dim; l++) {
|
||||
null_bias += fabs(network->kernel[i]->cnn->bias[j][k][l]) <= epsilon;
|
||||
}
|
||||
}
|
||||
}
|
||||
for (int j=0; j < rows; j++) {
|
||||
for (int k=0; k < columns; k++) {
|
||||
|
@ -104,13 +104,9 @@ void run_convolution_test(int input_dim, int output_dim, int rows, int columns)
|
||||
kernel->rows = rows;
|
||||
kernel->columns = columns;
|
||||
|
||||
// bias[kernel->columns]
|
||||
kernel->bias = (float*)nalloc(kernel->columns, sizeof(float));
|
||||
kernel->d_bias = (float*)nalloc(kernel->columns, sizeof(float));
|
||||
for (int i=0; i<kernel->columns; i++) {
|
||||
kernel->bias[i] = random_float(0.0f, 15.0f);
|
||||
kernel->d_bias[i] = random_float(0.0f, 1.5f);
|
||||
}
|
||||
// bias[kernel->columns][dim_output][dim_output]
|
||||
kernel->bias = create_matrix(kernel->columns, output_dim, output_dim, 15.0f);
|
||||
kernel->d_bias = create_matrix(kernel->columns, output_dim, output_dim, 1.5f);
|
||||
|
||||
// weights[rows][columns][k_size][k_size]
|
||||
kernel->weights = (float****)nalloc(kernel->rows, sizeof(float***));
|
||||
@ -154,8 +150,8 @@ void run_convolution_test(int input_dim, int output_dim, int rows, int columns)
|
||||
}
|
||||
printf(GREEN "OK\n" RESET);
|
||||
|
||||
gree(kernel->bias);
|
||||
gree(kernel->d_bias);
|
||||
free_matrix(kernel->bias, kernel->columns, output_dim);
|
||||
free_matrix(kernel->d_bias, kernel->columns, output_dim);
|
||||
|
||||
for (int i=0; i < kernel->rows; i++) {
|
||||
free_matrix(kernel->weights[i], kernel->columns, kernel->k_size);
|
||||
|
Loading…
Reference in New Issue
Block a user