mirror of
https://github.com/augustin64/projet-tipe
synced 2025-01-23 23:26:25 +01:00
Merge branch 'main' of https://github.com/julienChemillier/TIPE
This commit is contained in:
commit
1a6eb2d7c7
@ -1,14 +1,20 @@
|
||||
<!--
|
||||
Reveal.initialize({
|
||||
slideNumber: true
|
||||
});
|
||||
-->
|
||||
|
||||
# Présentation du TIPE
|
||||
|
||||
Julien Chemillier
|
||||
Augustin Lucas
|
||||
Élèves en MP2I
|
||||
Élèves en MPI*
|
||||
|
||||
---
|
||||
|
||||
## Objectif - Lien avec le sujet
|
||||
|
||||
![](https://augustin64.fr/tipe/geoguessr.png)
|
||||
![](https://augustin64.fr/tipe/geoguessr.jpg)
|
||||
|
||||
Note:
|
||||
Est-ce que vous connaissez Geoguessr ?
|
||||
|
@ -17,8 +17,8 @@ def avg(vals):
|
||||
"depth": vals[0]["depth"]
|
||||
}
|
||||
|
||||
def mul_matrix(n, p, q):
|
||||
output = subprocess.check_output(["./a.out", str(n), str(p), str(q)])
|
||||
def mul_matrix(n, p, q, executable="./a.out"):
|
||||
output = subprocess.check_output([executable, str(n), str(p), str(q)])
|
||||
result = [float(i.split(":")[-1]) for i in output.decode("utf8").split("\n") if i != ""]
|
||||
return {
|
||||
"GPUtime": result[0],
|
||||
@ -29,14 +29,39 @@ def mul_matrix(n, p, q):
|
||||
"depth": p
|
||||
}
|
||||
|
||||
def generate_data():
|
||||
def conv_matrix(n, p, q, r, executable="./a.out"):
|
||||
output = subprocess.check_output([executable, str(n), str(p), str(q), str(r)])
|
||||
result = [float(i.split(":")[-1]) for i in output.decode("utf8").split("\n") if i != ""]
|
||||
return {
|
||||
"GPUtime": result[0],
|
||||
"CPUtime": result[1],
|
||||
"errMax": result[2],
|
||||
"errMoy": result[3],
|
||||
"width": q,
|
||||
"depth": p
|
||||
}
|
||||
|
||||
def generate_data_mul():
|
||||
values = []
|
||||
depth = 40
|
||||
for i in range(60):
|
||||
values.append(avg([mul_matrix((i+1)*100, depth, (i+1)*100) for j in range(10)]))
|
||||
print(f"Added M({(i+1)*100}x{depth}) x M({depth}x{(i+1)*100})")
|
||||
|
||||
with open("result.json", "w") as file:
|
||||
with open("result_mul.json", "w") as file:
|
||||
json.dump(values, file, indent=4)
|
||||
|
||||
|
||||
def generate_data_conv():
|
||||
values = []
|
||||
output_dim = 40
|
||||
rows = 40
|
||||
columns = 40
|
||||
for i in range(10):
|
||||
values.append(avg([conv_matrix((i+1)*100, output_dim, rows, columns) for j in range(10)]))
|
||||
print(f"Added ({(i+1)*100}, output_dim, rows, columns)")
|
||||
|
||||
with open("result_conv.json", "w") as file:
|
||||
json.dump(values, file, indent=4)
|
||||
|
||||
|
||||
@ -58,7 +83,7 @@ def plot_erreur(data):
|
||||
plt.plot(x, CPUtime)
|
||||
plt.show()
|
||||
|
||||
def load_data():
|
||||
with open("result.json", 'r') as f:
|
||||
def load_data(filename="result.json"):
|
||||
with open(filename, 'r') as f:
|
||||
data = json.load(f)
|
||||
return data
|
23
src/scripts/compilation.sh
Executable file
23
src/scripts/compilation.sh
Executable file
@ -0,0 +1,23 @@
|
||||
#!/bin/bash
|
||||
|
||||
BUILDDIR="../../build"
|
||||
WD=$PWD
|
||||
|
||||
cd $BUILDDIR/..
|
||||
make all
|
||||
make build/cnn_cuda_matrix_multiplication.o
|
||||
cd $WD
|
||||
|
||||
echo "Compiling matrix_multiplication_benchmark.cu"
|
||||
nvcc -ljpeg \
|
||||
matrix_multiplication_benchmark.cu \
|
||||
"$BUILDDIR/"cnn_cuda_matrix_multiplication.o \
|
||||
"$BUILDDIR/"cuda_utils.o \
|
||||
-o benchmark-matrix-multiplication
|
||||
|
||||
echo "Compiling convolution_benchmark.cu"
|
||||
nvcc -ljpeg \
|
||||
convolution_benchmark.cu \
|
||||
"$BUILDDIR/"cnn_cuda_convolution.o \
|
||||
"$BUILDDIR/"cuda_utils.o \
|
||||
-o benchmark-convolution
|
201
src/scripts/convolution_benchmark.cu
Normal file
201
src/scripts/convolution_benchmark.cu
Normal file
@ -0,0 +1,201 @@
|
||||
#include <stdlib.h>
|
||||
#include <stdio.h>
|
||||
#include <stdbool.h>
|
||||
#include <assert.h>
|
||||
#include <math.h>
|
||||
#include <time.h>
|
||||
|
||||
#include "../cnn/include/convolution.h"
|
||||
#include "../cnn/include/struct.h"
|
||||
#include "../include/colors.h"
|
||||
#include "../include/utils.h"
|
||||
|
||||
|
||||
float random_float(float low, float high) {
|
||||
float t = (float)rand() / (float)RAND_MAX;
|
||||
return (1.0f - t) * low + t * high;
|
||||
}
|
||||
|
||||
|
||||
void fill_matrix_random(float ***matrix, int n, int p, int q, float max_val) {
|
||||
for (int i=0; i < n; i++) {
|
||||
for (int j=0; j < p; j++) {
|
||||
for (int k=0; k < q; k++) {
|
||||
matrix[i][j][k] = random_float(0.0f, max_val);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void print_matrix(float** mat, int n, int p) {
|
||||
for (int i=0; i < n; i++) {
|
||||
printf("[\t");
|
||||
for (int j=0; j < p; j++) {
|
||||
printf("%0.1f\t", mat[i][j]);
|
||||
}
|
||||
printf("]\n");
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
float*** create_matrix(int n, int p, int q, float max_val) {
|
||||
float*** matrix = (float***)malloc(n*sizeof(float**));
|
||||
for (int i=0; i < n; i++) {
|
||||
matrix[i] = (float**)malloc(sizeof(float*)*p);
|
||||
for (int j=0; j < p; j++) {
|
||||
matrix[i][j] = (float*)malloc(sizeof(float)*q);
|
||||
}
|
||||
}
|
||||
|
||||
fill_matrix_random(matrix, n, p, q, max_val);
|
||||
return matrix;
|
||||
}
|
||||
|
||||
|
||||
float*** create_empty_matrix(int n, int p, int q) {
|
||||
float*** matrix = (float***)malloc(n*sizeof(float**));
|
||||
for (int i=0; i < n; i++) {
|
||||
matrix[i] = (float**)malloc(sizeof(float*)*p);
|
||||
for (int j=0; j < p; j++) {
|
||||
matrix[i][j] = (float*)malloc(sizeof(float)*q);
|
||||
for (int k=0; k < q; k++) {
|
||||
matrix[i][j][k] = 0.;
|
||||
}
|
||||
}
|
||||
}
|
||||
return matrix;
|
||||
}
|
||||
|
||||
void free_matrix(float*** matrix, int n, int p) {
|
||||
for (int i=0; i < n; i++) {
|
||||
for (int j=0; j < p; j++) {
|
||||
free(matrix[i][j]);
|
||||
}
|
||||
free(matrix[i]);
|
||||
}
|
||||
free(matrix);
|
||||
}
|
||||
|
||||
float max_float(float a, float b) {
|
||||
return a > b ? a : b;
|
||||
}
|
||||
|
||||
bool check_matrices_equality(float*** m1, float*** m2, int n, int p, int q, int acceptation) {
|
||||
float err_max = 0.;
|
||||
float err_moy = 0.;
|
||||
float err_percent = 0.;
|
||||
for (int i=0; i < n; i++) {
|
||||
for (int j=0; j < p; j++) {
|
||||
for (int k=0; k < q; k++) {
|
||||
if (fabs(m1[i][j][k] - m2[i][j][k]) > 0.01*acceptation) {
|
||||
//printf(RED "diff %d %d %d: %f val: %f et %f\n" RESET, i, j, k, fabs(m1[i][j][k] - m2[i][j][k]), m1[i][j][k], m2[i][j][k]);
|
||||
//return false;
|
||||
}
|
||||
err_percent = 2*fabs(m1[i][j][k] - m2[i][j][k])/fabs(m1[i][j][k] + m2[i][j][k]);
|
||||
err_max = max_float(err_max, err_percent);
|
||||
err_moy += err_percent;
|
||||
}
|
||||
}
|
||||
}
|
||||
printf("err_max:%lf\n", err_max);
|
||||
printf("err_moy:%lf\n", err_moy/(n*p*q));
|
||||
return true;
|
||||
}
|
||||
|
||||
void run_convolution_test(int input_dim, int output_dim, int rows, int columns) {
|
||||
assert(input_dim >= output_dim);
|
||||
int k_size = input_dim - output_dim +1;
|
||||
|
||||
// Génération des données aléatoires
|
||||
Kernel_cnn* kernel = (Kernel_cnn*)malloc(sizeof(Kernel_cnn));
|
||||
|
||||
kernel->k_size = k_size;
|
||||
kernel->rows = rows;
|
||||
kernel->columns = columns;
|
||||
|
||||
// bias[kernel->columns][dim_output][dim_output]
|
||||
kernel->bias = create_matrix(kernel->columns, output_dim, output_dim, 15.0f);
|
||||
kernel->d_bias = create_matrix(kernel->columns, output_dim, output_dim, 1.5f);
|
||||
|
||||
// w[rows][columns][k_size][k_size]
|
||||
kernel->w = (float****)malloc(sizeof(float***)*kernel->rows);
|
||||
kernel->d_w = (float****)malloc(sizeof(float***)*kernel->rows);
|
||||
for (int i=0; i < kernel->rows; i++) {
|
||||
kernel->w[i] = create_matrix(kernel->columns, kernel->k_size, kernel->k_size, 15.0f);
|
||||
kernel->d_w[i] = create_matrix(kernel->columns, kernel->k_size, kernel->k_size, 1.5f);
|
||||
}
|
||||
|
||||
float*** input = create_matrix(kernel->rows, input_dim, input_dim, 5.0f);
|
||||
float*** output_cpu = create_empty_matrix(kernel->columns, output_dim, output_dim);
|
||||
float*** output_gpu = create_empty_matrix(kernel->columns, output_dim, output_dim);
|
||||
|
||||
//printf("(%d, %d, %d, %d) Data generation complete\n", rows, columns, input_dim, output_dim);
|
||||
|
||||
|
||||
// Lancement des calculs
|
||||
clock_t start, end;
|
||||
double cpu_time_used, gpu_time_used;
|
||||
|
||||
start = clock();
|
||||
make_convolution_device(kernel, input, output_gpu, output_dim);
|
||||
end = clock();
|
||||
|
||||
gpu_time_used = ((double) (end - start)) / CLOCKS_PER_SEC;
|
||||
printf("GPU: %lf\n", gpu_time_used);
|
||||
|
||||
|
||||
start = clock();
|
||||
make_convolution_cpu(kernel, input, output_cpu, output_dim);
|
||||
end = clock();
|
||||
|
||||
cpu_time_used = ((double) (end - start)) / CLOCKS_PER_SEC;
|
||||
printf("CPU: %lf\n", cpu_time_used);
|
||||
|
||||
// Vérification de l'égalité des matrices
|
||||
//printf("(%d, %d, %d, %d) Checking equality.\n", rows, columns, input_dim, output_dim);
|
||||
if (!check_matrices_equality(output_gpu, output_cpu, kernel->columns, output_dim, output_dim, kernel->k_size)) {// TODO: change acceptation
|
||||
//exit(1);
|
||||
}
|
||||
//printf(GREEN "OK\n" RESET);
|
||||
|
||||
free_matrix(kernel->bias, kernel->columns, output_dim);
|
||||
free_matrix(kernel->d_bias, kernel->columns, output_dim);
|
||||
|
||||
for (int i=0; i < kernel->rows; i++) {
|
||||
free_matrix(kernel->w[i], kernel->columns, kernel->k_size);
|
||||
free_matrix(kernel->d_w[i], kernel->columns, kernel->k_size);
|
||||
}
|
||||
free(kernel->w);
|
||||
free(kernel->d_w);
|
||||
|
||||
free_matrix(input, kernel->rows, input_dim);
|
||||
free_matrix(output_cpu, kernel->columns, output_dim);
|
||||
free_matrix(output_gpu, kernel->columns, output_dim);
|
||||
}
|
||||
|
||||
|
||||
int main(int argc, char* argv[]) {
|
||||
if (argc < 5) {
|
||||
return 1;
|
||||
}
|
||||
int n = strtol(argv[1], NULL, 10);
|
||||
int p = strtol(argv[2], NULL, 10);
|
||||
int q = strtol(argv[3], NULL, 10);
|
||||
int r = strtol(argv[4], NULL, 10);
|
||||
|
||||
/*
|
||||
printf("Checking CUDA compatibility.\n");
|
||||
bool cuda_compatible = check_cuda_compatibility();
|
||||
if (!cuda_compatible) {
|
||||
printf(RED "CUDA not compatible, skipping tests.\n" RESET);
|
||||
return 0;
|
||||
}
|
||||
*/
|
||||
|
||||
srand(time(NULL));
|
||||
|
||||
run_convolution_test(n, p, q, r);
|
||||
|
||||
return 0;
|
||||
}
|
@ -4,7 +4,7 @@
|
||||
#include <math.h>
|
||||
#include <time.h>
|
||||
|
||||
#include "../cnn/matrix_multiplication.cu"
|
||||
#include "../cnn/include/matrix_multiplication.h"
|
||||
|
||||
|
||||
float random_float(float low, float high) {
|
||||
@ -63,14 +63,16 @@ float max_float(float a, float b) {
|
||||
bool check_matrices_equality(float** m1, float** m2, int n, int p) {
|
||||
float err_max = 0.;
|
||||
float err_moy = 0.;
|
||||
float err_percent = 0.;
|
||||
for (int i=0; i < n; i++) {
|
||||
for (int j=0; j < p; j++) {
|
||||
if (fabs(m1[i][j] - m2[i][j]) > 0.8) {
|
||||
//printf("%d %d\n", i, j);
|
||||
//return false;
|
||||
}
|
||||
err_max = max_float(err_max, fabs(m1[i][j] - m2[i][j]));
|
||||
err_moy += fabs(m1[i][j] - m2[i][j]);
|
||||
err_percent = 2*fabs(m1[i][j] - m2[i][j])/fabs(m1[i][j] + m2[i][j]);
|
||||
err_max = max_float(err_max, err_percent);
|
||||
err_moy += err_percent;
|
||||
}
|
||||
}
|
||||
printf("err_max:%lf\n", err_max);
|
||||
|
45
test/cnn_structure.c
Normal file
45
test/cnn_structure.c
Normal file
@ -0,0 +1,45 @@
|
||||
#include <stdlib.h>
|
||||
#include <stdio.h>
|
||||
#include <stdint.h>
|
||||
#include <inttypes.h>
|
||||
|
||||
#include "../src/include/colors.h"
|
||||
#include "../src/cnn/include/creation.h"
|
||||
#include "../src/cnn/include/utils.h"
|
||||
#include "../src/cnn/include/free.h"
|
||||
#include "../src/include/colors.h"
|
||||
|
||||
|
||||
int main() {
|
||||
Kernel* kernel;
|
||||
printf("Création du réseau\n");
|
||||
Network* network = create_network_lenet5(0, 0, 3, 2, 32, 1);
|
||||
printf(GREEN "OK\n" RESET);
|
||||
|
||||
printf("Architecture LeNet5:\n");
|
||||
for (int i=0; i < network->size; i++) {
|
||||
kernel = network->kernel[i];
|
||||
if ((!kernel->cnn)&&(!kernel->nn)) {
|
||||
printf("\n==== Couche %d de type "YELLOW"Pooling"RESET" ====\n", i);
|
||||
printf("Linéarisation: %d\n", kernel->linearisation);
|
||||
} else if (!kernel->cnn) {
|
||||
printf("\n==== Couche %d de type "GREEN"NN"RESET" ====\n", i);
|
||||
printf("input: %d\n", kernel->nn->input_units);
|
||||
printf("output: %d\n", kernel->nn->output_units);
|
||||
} else {
|
||||
printf("\n==== Couche %d de type "BLUE"CNN"RESET" ====\n", i);
|
||||
printf("k_size: %d\n", kernel->cnn->k_size);
|
||||
printf("rows: %d\n", kernel->cnn->rows);
|
||||
printf("columns: %d\n", kernel->cnn->columns);
|
||||
}
|
||||
printf("width: %d\n", network->width[i]);
|
||||
printf("depth: %d\n", network->depth[i]);
|
||||
}
|
||||
printf(GREEN "\nOK\n" RESET);
|
||||
|
||||
printf("Libération de la mémoire\n");
|
||||
free_network(network);
|
||||
printf(GREEN "OK\n" RESET);
|
||||
|
||||
return 0;
|
||||
}
|
Loading…
Reference in New Issue
Block a user