mirror of
https://github.com/augustin64/projet-tipe
synced 2025-01-24 15:36:25 +01:00
Creation of update (.h and .c)
This commit is contained in:
parent
3a029b3d16
commit
0e317549a5
@ -6,6 +6,7 @@
|
|||||||
#include "include/initialisation.h"
|
#include "include/initialisation.h"
|
||||||
#include "include/function.h"
|
#include "include/function.h"
|
||||||
#include "include/creation.h"
|
#include "include/creation.h"
|
||||||
|
#include "include/update.h"
|
||||||
#include "include/make.h"
|
#include "include/make.h"
|
||||||
|
|
||||||
#include "../include/colors.h"
|
#include "../include/colors.h"
|
||||||
@ -130,85 +131,6 @@ void copy_input_to_input_z(float*** output, float*** output_a, int output_depth,
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
void update_weights(Network* network) {
|
|
||||||
int n = network->size;
|
|
||||||
int input_depth, input_width, output_depth, output_width;
|
|
||||||
Kernel* k_i;
|
|
||||||
Kernel* k_i_1;
|
|
||||||
for (int i=0; i<(n-1); i++) {
|
|
||||||
k_i = network->kernel[i];
|
|
||||||
k_i_1 = network->kernel[i+1];
|
|
||||||
input_depth = network->depth[i];
|
|
||||||
input_width = network->width[i];
|
|
||||||
output_depth = network->depth[i+1];
|
|
||||||
output_width = network->width[i+1];
|
|
||||||
|
|
||||||
if (k_i->cnn) { // Convolution
|
|
||||||
Kernel_cnn* cnn = k_i_1->cnn;
|
|
||||||
int k_size = cnn->k_size;
|
|
||||||
for (int a=0; a<input_depth; a++) {
|
|
||||||
for (int b=0; b<output_depth; b++) {
|
|
||||||
for (int c=0; c<k_size; c++) {
|
|
||||||
for (int d=0; d<k_size; d++) {
|
|
||||||
cnn->w[a][b][c][d] += cnn->d_w[a][b][c][d];
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
} else if (k_i->nn) { // Full connection
|
|
||||||
if (input_depth==1) { // Vecteur -> Vecteur
|
|
||||||
Kernel_nn* nn = k_i_1->nn;
|
|
||||||
for (int a=0; a<input_width; a++) {
|
|
||||||
for (int b=0; b<output_width; b++) {
|
|
||||||
nn->weights[a][b] += nn->d_weights[a][b];
|
|
||||||
}
|
|
||||||
}
|
|
||||||
} else { // Matrice -> vecteur
|
|
||||||
Kernel_nn* nn = k_i_1->nn;
|
|
||||||
int input_size = input_width*input_width*input_depth;
|
|
||||||
for (int a=0; a<input_size; a++) {
|
|
||||||
for (int b=0; b<output_width; b++) {
|
|
||||||
nn->weights[a][b] += nn->d_weights[a][b];
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
} else { // Pooling
|
|
||||||
(void)0; // Ne rien faire pour la couche pooling
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
void update_bias(Network* network) {
|
|
||||||
int n = network->size;
|
|
||||||
int output_width, output_depth;
|
|
||||||
Kernel* k_i;
|
|
||||||
Kernel* k_i_1;
|
|
||||||
for (int i=0; i<(n-1); i++) {
|
|
||||||
k_i = network->kernel[i];
|
|
||||||
k_i_1 = network->kernel[i+1];
|
|
||||||
output_width = network->width[i+1];
|
|
||||||
output_depth = network->depth[i+1];
|
|
||||||
|
|
||||||
if (k_i->cnn) { // Convolution
|
|
||||||
Kernel_cnn* cnn = k_i_1->cnn;
|
|
||||||
for (int a=0; a<output_depth; a++) {
|
|
||||||
for (int b=0; b<output_width; b++) {
|
|
||||||
for (int c=0; c<output_width; c++) {
|
|
||||||
cnn->bias[a][b][c] += cnn->d_bias[a][b][c];
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
} else if (k_i->nn) { // Full connection
|
|
||||||
Kernel_nn* nn = k_i_1->nn;
|
|
||||||
for (int a=0; a<output_width; a++) {
|
|
||||||
nn->bias[a] += nn->d_bias[a];
|
|
||||||
}
|
|
||||||
} else { // Pooling
|
|
||||||
(void)0; // Ne rien faire pour la couche pooling
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
float compute_mean_squared_error(float* output, float* wanted_output, int len) {
|
float compute_mean_squared_error(float* output, float* wanted_output, int len) {
|
||||||
if (len==0) {
|
if (len==0) {
|
||||||
printf("Erreur MSE: la longueur de la sortie est de 0 -> division par 0 impossible\n");
|
printf("Erreur MSE: la longueur de la sortie est de 0 -> division par 0 impossible\n");
|
||||||
|
26
src/cnn/include/update.h
Normal file
26
src/cnn/include/update.h
Normal file
@ -0,0 +1,26 @@
|
|||||||
|
#ifndef DEF_UPDATE_H
|
||||||
|
#define DEF_UPDATE_H
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Met à jours les poids à partir de données obtenus après plusieurs backpropagations
|
||||||
|
* Puis met à 0 tous les d_weights
|
||||||
|
*/
|
||||||
|
void update_weights(Network* network);
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Met à jours les biais à partir de données obtenus après plusieurs backpropagations
|
||||||
|
* Puis met à 0 tous les d_bias
|
||||||
|
*/
|
||||||
|
void update_bias(Network* network);
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Met à 0 toutes les données de backpropagation de poids
|
||||||
|
*/
|
||||||
|
void reset_d_weights(Network* network);
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Met à 0 toutes les données de backpropagation de biais
|
||||||
|
*/
|
||||||
|
void reset_d_bias(Network* network);
|
||||||
|
|
||||||
|
#endif
|
165
src/cnn/update.c
Normal file
165
src/cnn/update.c
Normal file
@ -0,0 +1,165 @@
|
|||||||
|
|
||||||
|
#include "update.h"
|
||||||
|
|
||||||
|
void update_weights(Network* network) {
|
||||||
|
int n = network->size;
|
||||||
|
int input_depth, input_width, output_depth, output_width;
|
||||||
|
Kernel* k_i;
|
||||||
|
Kernel* k_i_1;
|
||||||
|
for (int i=0; i<(n-1); i++) {
|
||||||
|
k_i = network->kernel[i];
|
||||||
|
k_i_1 = network->kernel[i+1];
|
||||||
|
input_depth = network->depth[i];
|
||||||
|
input_width = network->width[i];
|
||||||
|
output_depth = network->depth[i+1];
|
||||||
|
output_width = network->width[i+1];
|
||||||
|
|
||||||
|
if (k_i->cnn) { // Convolution
|
||||||
|
Kernel_cnn* cnn = k_i_1->cnn;
|
||||||
|
int k_size = cnn->k_size;
|
||||||
|
for (int a=0; a<input_depth; a++) {
|
||||||
|
for (int b=0; b<output_depth; b++) {
|
||||||
|
for (int c=0; c<k_size; c++) {
|
||||||
|
for (int d=0; d<k_size; d++) {
|
||||||
|
cnn->w[a][b][c][d] += cnn->d_w[a][b][c][d];
|
||||||
|
cnn->d_w[a][b][c][d] = 0;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
} else if (k_i->nn) { // Full connection
|
||||||
|
if (input_depth==1) { // Vecteur -> Vecteur
|
||||||
|
Kernel_nn* nn = k_i_1->nn;
|
||||||
|
for (int a=0; a<input_width; a++) {
|
||||||
|
for (int b=0; b<output_width; b++) {
|
||||||
|
nn->weights[a][b] += nn->d_weights[a][b];
|
||||||
|
nn->d_weights[a][b] = 0;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
} else { // Matrice -> vecteur
|
||||||
|
Kernel_nn* nn = k_i_1->nn;
|
||||||
|
int input_size = input_width*input_width*input_depth;
|
||||||
|
for (int a=0; a<input_size; a++) {
|
||||||
|
for (int b=0; b<output_width; b++) {
|
||||||
|
nn->weights[a][b] += nn->d_weights[a][b];
|
||||||
|
nn->d_weights[a][b] = 0;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
} else { // Pooling
|
||||||
|
(void)0; // Ne rien faire pour la couche pooling
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void update_bias(Network* network) {
|
||||||
|
int n = network->size;
|
||||||
|
int output_width, output_depth;
|
||||||
|
Kernel* k_i;
|
||||||
|
Kernel* k_i_1;
|
||||||
|
for (int i=0; i<(n-1); i++) {
|
||||||
|
k_i = network->kernel[i];
|
||||||
|
k_i_1 = network->kernel[i+1];
|
||||||
|
output_width = network->width[i+1];
|
||||||
|
output_depth = network->depth[i+1];
|
||||||
|
|
||||||
|
if (k_i->cnn) { // Convolution
|
||||||
|
Kernel_cnn* cnn = k_i_1->cnn;
|
||||||
|
for (int a=0; a<output_depth; a++) {
|
||||||
|
for (int b=0; b<output_width; b++) {
|
||||||
|
for (int c=0; c<output_width; c++) {
|
||||||
|
cnn->bias[a][b][c] += cnn->d_bias[a][b][c];
|
||||||
|
cnn->d_bias[a][b][c] = 0;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
} else if (k_i->nn) { // Full connection
|
||||||
|
Kernel_nn* nn = k_i_1->nn;
|
||||||
|
for (int a=0; a<output_width; a++) {
|
||||||
|
nn->bias[a] += nn->d_bias[a];
|
||||||
|
nn->d_bias[a] = 0;
|
||||||
|
}
|
||||||
|
} else { // Pooling
|
||||||
|
(void)0; // Ne rien faire pour la couche pooling
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void reset_d_weights(Network* network) {
|
||||||
|
int n = network->size;
|
||||||
|
int input_depth, input_width, output_depth, output_width;
|
||||||
|
Kernel* k_i;
|
||||||
|
Kernel* k_i_1;
|
||||||
|
for (int i=0; i<(n-1); i++) {
|
||||||
|
k_i = network->kernel[i];
|
||||||
|
k_i_1 = network->kernel[i+1];
|
||||||
|
input_depth = network->depth[i];
|
||||||
|
input_width = network->width[i];
|
||||||
|
output_depth = network->depth[i+1];
|
||||||
|
output_width = network->width[i+1];
|
||||||
|
|
||||||
|
if (k_i->cnn) { // Convolution
|
||||||
|
Kernel_cnn* cnn = k_i_1->cnn;
|
||||||
|
int k_size = cnn->k_size;
|
||||||
|
for (int a=0; a<input_depth; a++) {
|
||||||
|
for (int b=0; b<output_depth; b++) {
|
||||||
|
for (int c=0; c<k_size; c++) {
|
||||||
|
for (int d=0; d<k_size; d++) {
|
||||||
|
cnn->d_w[a][b][c][d] = 0;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
} else if (k_i->nn) { // Full connection
|
||||||
|
if (input_depth==1) { // Vecteur -> Vecteur
|
||||||
|
Kernel_nn* nn = k_i_1->nn;
|
||||||
|
for (int a=0; a<input_width; a++) {
|
||||||
|
for (int b=0; b<output_width; b++) {
|
||||||
|
nn->d_weights[a][b] = 0;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
} else { // Matrice -> vecteur
|
||||||
|
Kernel_nn* nn = k_i_1->nn;
|
||||||
|
int input_size = input_width*input_width*input_depth;
|
||||||
|
for (int a=0; a<input_size; a++) {
|
||||||
|
for (int b=0; b<output_width; b++) {
|
||||||
|
nn->d_weights[a][b] = 0;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
} else { // Pooling
|
||||||
|
(void)0; // Ne rien faire pour la couche pooling
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void reset_d_bias(Network* network) {
|
||||||
|
int n = network->size;
|
||||||
|
int output_width, output_depth;
|
||||||
|
Kernel* k_i;
|
||||||
|
Kernel* k_i_1;
|
||||||
|
for (int i=0; i<(n-1); i++) {
|
||||||
|
k_i = network->kernel[i];
|
||||||
|
k_i_1 = network->kernel[i+1];
|
||||||
|
output_width = network->width[i+1];
|
||||||
|
output_depth = network->depth[i+1];
|
||||||
|
|
||||||
|
if (k_i->cnn) { // Convolution
|
||||||
|
Kernel_cnn* cnn = k_i_1->cnn;
|
||||||
|
for (int a=0; a<output_depth; a++) {
|
||||||
|
for (int b=0; b<output_width; b++) {
|
||||||
|
for (int c=0; c<output_width; c++) {
|
||||||
|
cnn->d_bias[a][b][c] = 0;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
} else if (k_i->nn) { // Full connection
|
||||||
|
Kernel_nn* nn = k_i_1->nn;
|
||||||
|
for (int a=0; a<output_width; a++) {
|
||||||
|
nn->d_bias[a] = 0;
|
||||||
|
}
|
||||||
|
} else { // Pooling
|
||||||
|
(void)0; // Ne rien faire pour la couche pooling
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
Loading…
Reference in New Issue
Block a user