Add convolution to explaination

This commit is contained in:
julienChemillier 2023-02-14 15:21:09 +01:00
parent 00ae08891d
commit 0e0198bca2

View File

@ -55,3 +55,18 @@ $\forall i,j: \space b_{i j} = \dfrac{a_{2i \space 2j} + a_{2i+1 \space 2j} + a_
> Derivatives:
$\forall i,j: \space \dfrac{\partial E}{\partial a_{i \space j}} = \dfrac{1}{4} \dfrac{\partial E}{\partial b_{k \space l}} $
where $k = \Big\lfloor \dfrac{i}{2} \Big\rfloor$ and $l = \Big\lfloor \dfrac{j}{2} \Big\rfloor$
---
---
## Backpropagation of a convolutionnal layer
<img src="convolution_layer.png" width="300">
$\forall i,j: c_{i \space j} = b_{i \space j} + \sum\limits_{0 \leqslant k, l \leqslant 1} \space k_{k \space l} c_{i+k, \space j+l}$
$ $
> Derivatives:
$\dfrac{\partial E}{\partial b_{i,j}} = \dfrac{\partial E}{\partial c_{i, j}}$
$\dfrac{\partial E}{\partial k_{i,j}} = \sum\limits_{p=0}^{2} \sum\limits_{l=0}^{2} \Big( \dfrac{\partial E}{\partial c_{k \space l}} a_{i+p, j+l}\Big)$
$\dfrac{\partial E}{\partial a_{i,j}} = \sum\limits_{k=max(0, k\_size-1)}^{min(k\_size, dim\_input-j)} \sum\limits_{l=max(0, k\ _size-1)}^{min(k\_size, dim\_input-k)} \dfrac{}{}$