2022-11-11 11:20:30 +01:00
|
|
|
#include <stdlib.h>
|
|
|
|
#include <stdio.h>
|
2023-01-29 09:40:55 +01:00
|
|
|
#ifdef USE_CUDA
|
|
|
|
#ifndef __CUDACC__
|
|
|
|
#include "cuda_runtime.h"
|
|
|
|
#endif
|
|
|
|
#endif
|
2022-11-11 11:20:30 +01:00
|
|
|
|
2023-02-19 15:01:58 +01:00
|
|
|
#include "include/memory_management.h"
|
2022-11-11 11:20:30 +01:00
|
|
|
#include "include/colors.h"
|
|
|
|
|
2023-02-19 15:01:58 +01:00
|
|
|
#include "include/utils.h"
|
|
|
|
|
2023-03-28 12:38:06 +02:00
|
|
|
#define BLOCKSIZE_x 16
|
|
|
|
#define BLOCKSIZE_y 8
|
|
|
|
#define BLOCKSIZE_z 8
|
|
|
|
|
2022-11-11 11:20:30 +01:00
|
|
|
|
|
|
|
int i_div_up(int a, int b) { // Partie entière supérieure de a/b
|
|
|
|
return ((a % b) != 0) ? (a / b + 1) : (a / b);
|
|
|
|
}
|
|
|
|
|
2023-01-29 09:40:55 +01:00
|
|
|
#ifdef __CUDACC__
|
2023-02-15 11:22:51 +01:00
|
|
|
extern "C"
|
2023-01-29 09:40:55 +01:00
|
|
|
#endif
|
2022-11-11 11:20:30 +01:00
|
|
|
bool check_cuda_compatibility() {
|
|
|
|
#ifdef __CUDACC__
|
|
|
|
int nDevices;
|
|
|
|
cudaDeviceProp prop;
|
|
|
|
|
|
|
|
cudaGetDeviceCount(&nDevices);
|
|
|
|
if (nDevices == 0) {
|
|
|
|
printf("Pas d'utilisation du GPU\n\n");
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
printf("GPUs disponibles:\n");
|
|
|
|
|
|
|
|
for (int i=0; i < nDevices; i++) {
|
|
|
|
cudaGetDeviceProperties(&prop, i);
|
2023-02-19 15:01:58 +01:00
|
|
|
printf(" - %s\n\t - Compute Capability: %d.%d\n\t - Memory available: ", prop.name, prop.major, prop.minor);
|
|
|
|
printf_memory(prop.totalGlobalMem);
|
|
|
|
printf("\n\t - Shared Memory per block: ");
|
|
|
|
printf_memory(prop.sharedMemPerBlock);
|
|
|
|
printf("\n\n");
|
2022-11-11 11:20:30 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
cudaGetDeviceProperties(&prop, 0);
|
2023-02-19 15:01:58 +01:00
|
|
|
printf("Utilisation du GPU: " BLUE "%s" RESET "\n\n", prop.name);
|
|
|
|
|
|
|
|
if (prop.sharedMemPerBlock != MEMORY_BLOCK) {
|
|
|
|
printf_warning((char*)"La taille des blocs mémoire du GPU et celle utilisée dans le code diffèrent.\n");
|
|
|
|
printf("\tCela peut mener à une utilisation supplémentaire de VRAM.\n");
|
|
|
|
printf("\tChanger MEMORY_BLOCK à %ld dans src/include/memory_management.h\n", prop.sharedMemPerBlock);
|
|
|
|
}
|
2022-11-11 11:20:30 +01:00
|
|
|
return true;
|
|
|
|
#else
|
|
|
|
printf("Pas d'utilisation du GPU\n\n");
|
|
|
|
return false;
|
|
|
|
#endif
|
2023-01-28 22:04:38 +01:00
|
|
|
}
|
2023-03-28 12:38:06 +02:00
|
|
|
|
|
|
|
#ifdef __CUDACC__
|
|
|
|
__global__ void copy_3d_array_kernel(float*** source, float*** dest, int dimension1, int dimension2, int dimension3) {
|
|
|
|
int idx = threadIdx.x + blockDim.x*blockIdx.x; // < dimension1
|
|
|
|
int idy = threadIdx.y + blockDim.y*blockIdx.y; // < dimension2
|
|
|
|
int idz = threadIdx.z + blockDim.z*blockIdx.z; // < dimension3
|
|
|
|
|
|
|
|
if (idx >= dimension1 || idy >= dimension2 || idz >= dimension3) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
dest[idx][idy][idz] = source[idx][idy][idz];
|
|
|
|
}
|
|
|
|
|
|
|
|
void copy_3d_array(float*** source, float*** dest, int dimension1, int dimension2, int dimension3) {
|
|
|
|
dim3 gridSize(i_div_up(dimension1, BLOCKSIZE_x), i_div_up(dimension2, BLOCKSIZE_y), i_div_up(dimension3, BLOCKSIZE_z));
|
|
|
|
dim3 blockSize(BLOCKSIZE_x, BLOCKSIZE_y, BLOCKSIZE_z);
|
|
|
|
|
|
|
|
copy_3d_array_kernel<<<gridSize, blockSize>>>(source, dest, dimension1, dimension2, dimension3);
|
|
|
|
|
|
|
|
gpuErrchk( cudaPeekAtLastError() );
|
|
|
|
gpuErrchk( cudaDeviceSynchronize() );
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
void copy_3d_array(float*** source, float*** dest, int dimension1, int dimension2, int dimension3) {
|
|
|
|
for (int i=0; i < dimension1; i++) {
|
|
|
|
for (int j=0; j < dimension2; j++) {
|
|
|
|
for (int k=0; k < dimension3; k++) {
|
|
|
|
dest[i][j][k] = source[i][j][k];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2023-03-30 18:08:13 +02:00
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifdef __CUDACC__
|
|
|
|
__global__ void reset_3d_array_kernel(float*** dest, int dimension1, int dimension2, int dimension3) {
|
|
|
|
int idx = threadIdx.x + blockDim.x*blockIdx.x; // < dimension1
|
|
|
|
int idy = threadIdx.y + blockDim.y*blockIdx.y; // < dimension2
|
|
|
|
int idz = threadIdx.z + blockDim.z*blockIdx.z; // < dimension3
|
|
|
|
|
|
|
|
if (idx >= dimension1 || idy >= dimension2 || idz >= dimension3) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
dest[idx][idy][idz] = 0.;
|
|
|
|
}
|
|
|
|
|
|
|
|
extern "C"
|
|
|
|
void reset_3d_array(float*** dest, int dimension1, int dimension2, int dimension3) {
|
|
|
|
dim3 gridSize(i_div_up(dimension1, BLOCKSIZE_x), i_div_up(dimension2, BLOCKSIZE_y), i_div_up(dimension3, BLOCKSIZE_z));
|
|
|
|
dim3 blockSize(BLOCKSIZE_x, BLOCKSIZE_y, BLOCKSIZE_z);
|
|
|
|
|
|
|
|
reset_3d_array_kernel<<<gridSize, blockSize>>>(dest, dimension1, dimension2, dimension3);
|
|
|
|
|
|
|
|
gpuErrchk( cudaPeekAtLastError() );
|
|
|
|
gpuErrchk( cudaDeviceSynchronize() );
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
void reset_3d_array(float*** dest, int dimension1, int dimension2, int dimension3) {
|
|
|
|
for (int i=0; i < dimension1; i++) {
|
|
|
|
for (int j=0; j < dimension2; j++) {
|
|
|
|
for (int k=0; k < dimension3; k++) {
|
|
|
|
dest[i][j][k] = 0.;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2023-03-28 12:38:06 +02:00
|
|
|
#endif
|