### **25 Avril 2022** Optimisation de la taille des époques. [698e72f](https://github.com/julienChemillier/TIPE/commit/698e72f56ed93aa6f5d9c81912ee98461f534410)
### **14 Mai 2022** Implémentation du multithreading. [d40212d](https://github.com/julienChemillier/TIPE/commit/d40212d313b3e8260cb9f5527f261d5d86ad2d1b)
Le problème qui se posera dans le futur est celui de la puissance de calcul nécessaire.
Pour l'optimiser, il faut donc utiliser au maximum les ressources disponibles.
<br/>
<br/>
<br/>
### **28 Septembre 2022** Enregistrement des fichiers du CNN [a478a45](https://github.com/julienChemillier/TIPE/commit/a478a454fd1698585b2de83c8abbdca36eb2111b)
Le réseau neuronal simple donnant des résultats convaincants (approximativement 90% de réussite sur l'échantillon de test),
Le réseau neuronal convolutif a commencé à être développé depuis [6532ad2](https://github.com/julienChemillier/TIPE/commit/6532ad2545f8882638209cc6918bf37a9f816840).
Ce commit introduit l'enregistrement du réseau de neurones convolutif,
suivi de près par les tests unitaires correspondants [b12a03c](https://github.com/julienChemillier/TIPE/commit/b12a03c1baa8e8505066fa07ae2f20882a24854b).
<br/>
<br/>
<br/>
### **30 Novembre 2022** Réparation du NN simple [ffc0c6e](https://github.com/julienChemillier/TIPE/commit/ffc0c6ea9fe30c7e98624ca26867d984ec90c693)
Après un peu de débogage sur le réseau convolutif, on s'est rendu compte que le réseau simple ne fonctionnait pas bien avec des couches intermédiaires et du multithreading.
Le problème principal étant la découpe des batches étant la même à chaque époque.
Après implémentation d'un mélange de Knuth, tout est rentré dans l'ordre donnant des résultats encore plus satisfaisants pour les couches intermédiaires. (De l'ordre de 70% avec deux couches intermédiaires et utilisation du multithreading).
<br/>
<br/>
<br/>
### **25 Janvier 2023** Premiers résultats sur la seconde implémentation [220d0a7](https://github.com/julienChemillier/TIPE/commit/220d0a71be2a28f63ba1e1c7804e2e9fd909e12d)
Premiers résultats sur le réseau `simple_one` qui suit la structure du premier réseau.
La backpropagation des poids ne fonctionne cependant pas sur les couches de convolution et de pooling.