tipe/src/cnn/train.c

253 lines
9.7 KiB
C
Raw Normal View History

2022-10-01 17:53:14 +02:00
#include <stdlib.h>
#include <stdio.h>
#include <float.h>
#include <pthread.h>
#include <sys/sysinfo.h>
2022-11-16 10:38:01 +01:00
#include <time.h>
2022-10-01 17:53:14 +02:00
2022-10-24 12:54:51 +02:00
#include "../mnist/include/mnist.h"
#include "include/initialisation.h"
#include "include/neuron_io.h"
#include "../include/colors.h"
#include "include/function.h"
#include "include/creation.h"
2022-11-15 12:50:38 +01:00
#include "include/update.h"
2022-10-24 12:54:51 +02:00
#include "include/utils.h"
#include "include/free.h"
2022-11-19 16:09:07 +01:00
#include "include/jpeg.h"
2022-10-24 12:54:51 +02:00
#include "include/cnn.h"
2022-10-01 17:53:14 +02:00
#include "include/train.h"
2022-11-25 15:17:47 +01:00
int div_up(int a, int b) { // Partie entière supérieure de a/b
return ((a % b) != 0) ? (a / b + 1) : (a / b);
2022-11-03 18:13:01 +01:00
}
2022-10-01 17:53:14 +02:00
void* train_thread(void* parameters) {
TrainParameters* param = (TrainParameters*)parameters;
Network* network = param->network;
2022-11-19 16:09:07 +01:00
imgRawImage* image;
2022-11-03 18:13:01 +01:00
int maxi;
2022-10-01 17:53:14 +02:00
int*** images = param->images;
2022-10-24 12:54:51 +02:00
int* labels = (int*)param->labels;
2022-12-07 10:44:28 +01:00
int* index = param->index;
2022-10-01 17:53:14 +02:00
int width = param->width;
int height = param->height;
int dataset_type = param->dataset_type;
int start = param->start;
int nb_images = param->nb_images;
float accuracy = 0.;
for (int i=start; i < start+nb_images; i++) {
if (dataset_type == 0) {
2022-12-07 10:44:28 +01:00
write_image_in_network_32(images[index[i]], height, width, network->input[0][0]);
2022-10-07 14:26:36 +02:00
forward_propagation(network);
2022-11-15 12:58:00 +01:00
maxi = indice_max(network->input[network->size-1][0][0], 10);
2022-10-24 12:54:51 +02:00
backward_propagation(network, labels[i]);
2022-11-16 10:38:01 +01:00
2022-12-07 10:44:28 +01:00
if (maxi == labels[index[i]]) {
2022-11-03 18:13:01 +01:00
accuracy += 1.;
}
2022-10-01 17:53:14 +02:00
} else {
2022-12-07 10:44:28 +01:00
if (!param->dataset->images[index[i]]) {
image = loadJpegImageFile(param->dataset->fileNames[index[i]]);
param->dataset->images[index[i]] = image->lpData;
2022-11-19 16:09:07 +01:00
free(image);
}
2022-12-07 10:44:28 +01:00
write_image_in_network_260(param->dataset->images[index[i]], height, width, network->input[0]);
2022-11-19 16:09:07 +01:00
forward_propagation(network);
2022-11-19 22:22:24 +01:00
maxi = indice_max(network->input[network->size-1][0][0], param->dataset->numCategories);
2022-12-07 10:44:28 +01:00
backward_propagation(network, param->dataset->labels[index[i]]);
2022-11-19 16:09:07 +01:00
2022-12-07 10:44:28 +01:00
if (maxi == (int)param->dataset->labels[index[i]]) {
2022-11-19 16:09:07 +01:00
accuracy += 1.;
}
2022-12-07 10:44:28 +01:00
free(param->dataset->images[index[i]]);
param->dataset->images[index[i]] = NULL;
2022-10-01 17:53:14 +02:00
}
}
param->accuracy = accuracy;
return NULL;
}
void train(int dataset_type, char* images_file, char* labels_file, char* data_dir, int epochs, char* out) {
2022-11-16 10:38:01 +01:00
srand(time(NULL));
2022-10-01 17:53:14 +02:00
int input_dim = -1;
int input_depth = -1;
float accuracy;
2022-11-15 17:50:33 +01:00
float current_accuracy;
2022-10-01 17:53:14 +02:00
2022-11-23 11:37:26 +01:00
int nb_images_total; // Images au total
int nb_images_total_remaining; // Images restantes dans un batch
int batches_epoques; // Batches par époque
2022-10-01 17:53:14 +02:00
2022-12-07 10:44:28 +01:00
int*** images; // Images sous forme de tableau de tableaux de tableaux de pixels (degré de gris, MNIST)
unsigned int* labels; // Labels associés aux images du dataset MNIST
jpegDataset* dataset; // Structure de données décrivant un dataset d'images jpeg
int* shuffle_index; // shuffle_index[i] contient le nouvel index de l'élément à l'emplacement i avant mélange
2022-10-01 17:53:14 +02:00
if (dataset_type == 0) { // Type MNIST
// Chargement des images du set de données MNIST
int* parameters = read_mnist_images_parameters(images_file);
nb_images_total = parameters[0];
free(parameters);
images = read_mnist_images(images_file);
labels = read_mnist_labels(labels_file);
input_dim = 32;
input_depth = 1;
2022-11-19 16:09:07 +01:00
} else { // Type JPG
dataset = loadJpegDataset(data_dir);
input_dim = dataset->height + 4; // image_size + padding
input_depth = dataset->numComponents;
2022-10-01 17:53:14 +02:00
2022-11-19 16:09:07 +01:00
nb_images_total = dataset->numImages;
2022-10-01 17:53:14 +02:00
}
// Initialisation du réseau
2022-12-07 10:44:28 +01:00
Network* network = create_network_lenet5(1, 0, TANH, GLOROT, input_dim, input_depth);
shuffle_index = (int*)malloc(sizeof(int)*nb_images_total);
for (int i=0; i < nb_images_total; i++) {
shuffle_index[i] = i;
}
2022-10-01 17:53:14 +02:00
#ifdef USE_MULTITHREADING
2022-11-15 17:50:33 +01:00
int nb_remaining_images; // Nombre d'images restantes à lancer pour une série de threads
2022-10-01 17:53:14 +02:00
// Récupération du nombre de threads disponibles
int nb_threads = get_nprocs();
pthread_t *tid = (pthread_t*)malloc(nb_threads * sizeof(pthread_t));
// Création des paramètres donnés à chaque thread dans le cas du multi-threading
TrainParameters** train_parameters = (TrainParameters**)malloc(sizeof(TrainParameters*)*nb_threads);
TrainParameters* param;
for (int k=0; k < nb_threads; k++) {
train_parameters[k] = (TrainParameters*)malloc(sizeof(TrainParameters));
param = train_parameters[k];
param->dataset_type = dataset_type;
if (dataset_type == 0) {
param->images = images;
param->labels = labels;
2022-11-19 16:09:07 +01:00
param->dataset = NULL;
2022-10-01 17:53:14 +02:00
param->width = 28;
param->height = 28;
} else {
2022-11-19 16:09:07 +01:00
param->dataset = dataset;
param->width = dataset->width;
param->height = dataset->height;
2022-10-01 17:53:14 +02:00
param->images = NULL;
param->labels = NULL;
}
param->nb_images = BATCHES / nb_threads;
2022-12-07 10:44:28 +01:00
param->index = shuffle_index;
2022-10-01 17:53:14 +02:00
}
#else
// Création des paramètres donnés à l'unique
// thread dans l'hypothèse ou le multi-threading n'est pas utilisé.
// Cela est utile à des fins de débogage notamment,
// où l'utilisation de threads rend vite les choses plus compliquées qu'elles ne le sont.
TrainParameters* train_params = (TrainParameters*)malloc(sizeof(TrainParameters));
train_params->network = network;
train_params->dataset_type = dataset_type;
if (dataset_type == 0) {
train_params->images = images;
train_params->labels = labels;
2022-10-07 14:26:36 +02:00
train_params->width = 28;
train_params->height = 28;
2022-11-19 16:09:07 +01:00
train_params->dataset = NULL;
2022-10-01 17:53:14 +02:00
} else {
2022-11-19 16:09:07 +01:00
train_params->dataset = dataset;
train_params->width = dataset->width;
train_params->height = dataset->height;
2022-10-01 17:53:14 +02:00
train_params->images = NULL;
train_params->labels = NULL;
}
train_params->nb_images = BATCHES;
2022-12-07 10:44:28 +01:00
train_params->index = shuffle_index;
2022-10-01 17:53:14 +02:00
#endif
for (int i=0; i < epochs; i++) {
// La variable accuracy permet d'avoir une ESTIMATION
// du taux de réussite et de l'entraînement du réseau,
// mais n'est en aucun cas une valeur réelle dans le cas
// du multi-threading car chaque copie du réseau initiale sera légèrement différente
// et donnera donc des résultats différents sur les mêmes images.
accuracy = 0.;
2022-12-07 10:44:28 +01:00
knuth_shuffle(shuffle_index, nb_images_total);
2022-11-25 15:17:47 +01:00
batches_epoques = div_up(nb_images_total, BATCHES);
2022-11-23 11:37:26 +01:00
nb_images_total_remaining = nb_images_total;
for (int j=0; j < batches_epoques; j++) {
2022-11-15 17:50:33 +01:00
#ifdef USE_MULTITHREADING
2022-11-23 11:37:26 +01:00
if (j == batches_epoques-1) {
nb_remaining_images = nb_images_total_remaining;
nb_images_total_remaining = 0;
} else {
nb_images_total_remaining -= BATCHES;
nb_remaining_images = BATCHES;
}
2022-10-01 17:53:14 +02:00
for (int k=0; k < nb_threads; k++) {
if (k == nb_threads-1) {
train_parameters[k]->nb_images = nb_remaining_images;
nb_remaining_images = 0;
} else {
nb_remaining_images -= BATCHES / nb_threads;
}
2022-11-23 11:37:26 +01:00
train_parameters[k]->start = BATCHES*j + (BATCHES/nb_threads)*k;
2022-10-07 14:26:36 +02:00
train_parameters[k]->network = copy_network(network);
2022-11-23 11:37:26 +01:00
2022-11-23 10:41:19 +01:00
pthread_create( &tid[k], NULL, train_thread, (void*) train_parameters[k]);
2022-10-01 17:53:14 +02:00
}
for (int k=0; k < nb_threads; k++) {
// On attend la terminaison de chaque thread un à un
2022-11-23 10:41:19 +01:00
pthread_join( tid[k], NULL );
2022-10-01 17:53:14 +02:00
accuracy += train_parameters[k]->accuracy / (float) nb_images_total;
2022-11-23 10:41:19 +01:00
2022-12-07 10:44:28 +01:00
update_weights(network, train_parameters[k]->network, train_parameters[k]->nb_images);
update_bias(network, train_parameters[k]->network, train_parameters[k]->nb_images);
2022-10-07 14:26:36 +02:00
free_network(train_parameters[k]->network);
2022-10-01 17:53:14 +02:00
}
2022-11-19 16:09:07 +01:00
current_accuracy = accuracy * nb_images_total/((j+1)*BATCHES);
2022-11-16 10:38:01 +01:00
printf("\rThreads [%d]\tÉpoque [%d/%d]\tImage [%d/%d]\tAccuracy: "YELLOW"%0.1f%%"RESET" ", nb_threads, i, epochs, BATCHES*(j+1), nb_images_total, current_accuracy*100);
2022-11-23 11:37:26 +01:00
fflush(stdout);
2022-10-01 17:53:14 +02:00
#else
2022-12-07 10:44:28 +01:00
(void)nb_images_total_remaining; // Juste pour enlever un warning
2022-10-01 17:53:14 +02:00
train_params->start = j*BATCHES;
2022-11-16 10:38:01 +01:00
2022-10-01 17:53:14 +02:00
train_thread((void*)train_params);
2022-11-16 10:38:01 +01:00
2022-10-01 17:53:14 +02:00
accuracy += train_params->accuracy / (float) nb_images_total;
2022-11-19 16:09:07 +01:00
current_accuracy = accuracy * nb_images_total/((j+1)*BATCHES);
2022-11-16 10:38:01 +01:00
2022-12-07 10:44:28 +01:00
update_weights(network, network, train_params->nb_images);
update_bias(network, network, train_params->nb_images);
2022-11-16 10:38:01 +01:00
printf("\rÉpoque [%d/%d]\tImage [%d/%d]\tAccuracy: "YELLOW"%0.1f%%"RESET" ", i, epochs, BATCHES*(j+1), nb_images_total, current_accuracy*100);
2022-11-18 14:09:49 +01:00
fflush(stdout);
2022-10-01 17:53:14 +02:00
#endif
}
#ifdef USE_MULTITHREADING
2022-11-16 10:38:01 +01:00
printf("\rThreads [%d]\tÉpoque [%d/%d]\tImage [%d/%d]\tAccuracy: "GREEN"%0.1f%%"RESET" \n", nb_threads, i, epochs, nb_images_total, nb_images_total, accuracy*100);
2022-10-01 17:53:14 +02:00
#else
2022-11-16 10:38:01 +01:00
printf("\rÉpoque [%d/%d]\tImage [%d/%d]\tAccuracy: "GREEN"%0.1f%%"RESET" \n", i, epochs, nb_images_total, nb_images_total, accuracy*100);
2022-10-01 17:53:14 +02:00
#endif
write_network(out, network);
}
2022-12-07 10:44:28 +01:00
free(shuffle_index);
2022-10-07 14:26:36 +02:00
free_network(network);
2022-10-01 17:53:14 +02:00
#ifdef USE_MULTITHREADING
free(tid);
#else
free(train_params);
#endif
}