1. Créer un réseau de neurones "basique", constitué uniquement de couches denses pour se familiariser avec la structure de réseaux de neurones et le langage C qui n'avait que peu été étudié auparavant.
2. Créer un réseau de neurones convolutif plus efficace sur des images de grande taille.
3. Implémenter différentes techniques d'optimisation du temps de calcul (utilisation du GPU) et du nombre d'itérations (Adam Optimizer)
Les trois premières étapes se feront sur le jeu de données [MNIST](#références-bibliographiques) pour des calculs plus adaptés à une phase de développement. Après avoir validé le fonctionnement de ces réseaux, le réseau créé à l'étape 3 sera utilisé sur le jeu de données [50States10K](#références-bibliographiques).
Résultats sur MNIST avec l'architecture LeNet-5, avec Leaky RELU en fonction d'activation, des Batchs de taille 32 et le décalage aléatoire des images désactivé:
Configuration dans `src/cnn/config.h`. Cette optimisation peut-être désactivée à la compilation sur chacun des éléments du réseau de manière indépendante
Meilleur taux de réussite sur le jeu de test avec Adam Optimizer (`ADAM_DENSE_WEIGHTS` uniquement): `97.3%`
Un des objectifs principaux de ce TIPE étant également de réaliser un réseau de neurones n'utilisant pas de bibliothèques extérieures pour plus de clarté, seulement la gestion de la mémoire partagée sera faite "en boîte noire". Par exemple, on essayera d'éviter les appels aux fonctions de multiplication de matrices ou de convolution toute faites.
Pour utiliser la carte graphique, toutes les données traitées par le GPU doivent être copiées dans la mémoire de celui-ci, mais la manière dont cela est géré impose d'allouer des blocs de 48kB de mémoire pour en éviter une saturation très rapide. Une "surcouche" à la gestion de la mémoire est donc implémentée dans `src/cnn/memory_management.cu`
Sur le cloud avec google Colab: bon GPU mais mauvais processeur: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1LfwSrQRaoC91yC9mx9BKHzuc7odev5r6?usp=sharing)
|1998|LeNet-5, convolutional neural networks|Yann Lecun et al.|http://yann.lecun.com/exdb/lenet/index.html
|1998|THE MNIST DATABASE of handwritten digits|Yann LeCun, Corinna Cortes, Christopher J.C. Burges|http://yann.lecun.com/exdb/mnist/
|2008|IM2GPS: estimating geographic information from a single image|James Hays and Alexei A. Efros|http://graphics.cs.cmu.edu/projects/im2gps/im2gps.pdf
|2012|ImageNet Classification with Deep Convolutional Neural Networks|Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton|https://papers.nips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
|2014|Adam: A Method for Stochastic Optimization|Diederik P. Kingma, Jimmy Ba|https://arxiv.org/abs/1412.6980
|2014|Very Deep Convolutional Networks for Large-Scale Image Recognition|Karen Simonyan, Andrew Zisserman|https://arxiv.org/abs/1409.1556
|2016|PlaNet - Photo Geolocation with Convolutional Neural Networks|Tobias Weyand, Ilya Kostrikov, James Philbin|https://arxiv.org/abs/1602.05314
|2017|Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms|Han Xiao, Kashif Rasul, Roland Vollgraf|https://arxiv.org/abs/1708.07747
|2017|Recent Advances in Convolutional Neural Network|Jiuxiang Gua, Zhenhua Wangb, Jason Kuen et al.|https://arxiv.org/abs/1512.07108
|2018|DeepGeo: Photo Localization with Deep Neural Network|Sudharshan Suresh, Nathaniel Chodosh, Montiel Abello|https://arxiv.org/abs/1810.03077