tipe/src/mnist_cnn/free.c

107 lines
3.2 KiB
C
Raw Normal View History

2022-07-05 08:13:25 +02:00
#include <stdlib.h>
#include <stdio.h>
#include "free.h"
void free_a_cube_input_layer(Network* network, int pos, int depth, int dim) {
int i, j, k;
for (i=0; i<depth; i++) {
for (j=0; j<dim; j++) {
free(network->input[pos][i][j]);
}
free(network->input[pos][i]);
}
free(network->input[pos]);
}
void free_a_line_input_layer(Network* network, int pos) {
free(network->input[pos][0][0]);
free(network->input[pos][0]);
free(network->input[pos]);
}
void free_average_pooling(Network* network, int pos) {
free_a_cube_input_layer(network, pos, network->dim[pos-1][1], network->dim[pos-1][0]/2);
}
void free_average_pooling_flatten(Network* network, int pos) {
free_a_line_input_layer(network, pos);
}
void free_convolution(Network* network, int pos) {
int i, j, k, c = network->kernel[pos].cnn->columns;
int k_size = network->kernel[pos].cnn->k_size;
int r = network->kernel[pos].cnn->rows;
free_a_cube_input_layer(network, pos, c, network->dim[pos-1][0] - 2*(k_size/2));
for (i=0; i<c; i++) {
for (j=0; j<k_size; j++) {
free(network->kernel[pos].cnn->bias[i][j]);
free(network->kernel[pos].cnn->d_bias[i][j]);
}
free(network->kernel[pos].cnn->bias[i]);
free(network->kernel[pos].cnn->d_bias[i]);
}
free(network->kernel[pos].cnn->bias);
free(network->kernel[pos].cnn->d_bias);
for (i=0; i<r; i++) {
for (j=0; j<c; j++) {
for (k=0; k<k_size; k++) {
free(network->kernel[pos].cnn->w[i][j][k]);
free(network->kernel[pos].cnn->d_w[i][j][k]);
}
free(network->kernel[pos].cnn->w[i][j]);
free(network->kernel[pos].cnn->d_w[i][j]);
}
free(network->kernel[pos].cnn->w[i]);
free(network->kernel[pos].cnn->d_w[i]);
}
free(network->kernel[pos].cnn->w);
free(network->kernel[pos].cnn->d_w);
free(network->kernel[pos].cnn);
}
void free_dense(Network* network, int pos) {
free_a_line_input_layer(network, pos);
int i, dim = network->kernel[pos].nn->output_units;
for (int i=0; i<dim; i++) {
free(network->kernel[pos].nn->weights[i]);
free(network->kernel[pos].nn->d_weights[i]);
}
free(network->kernel[pos].nn->weights);
free(network->kernel[pos].nn->d_weights);
free(network->kernel[pos].nn->bias);
free(network->kernel[pos].nn->d_bias);
free(network->kernel[pos].nn);
}
void free_network_creation(Network* network) {
free_a_cube_input_layer(network, 0, network->dim[0][1], network->dim[0][0]);
for (int i=0; i<network->max_size; i++) {
free(network->dim[i]);
}
free(network->dim);
free(network->kernel);
free(network->input);
free(network);
}
void free_network_lenet5(Network* network) {
free_dense(network, 6);
free_dense(network, 5);
free_dense(network, 4);
free_average_pooling_flatten(network, 3);
free_convolution(network, 2);
free_average_pooling(network, 1);
free_convolution(network, 0);
free_network_creation(network);
if (network->size != network->max_size) {
printf("Attention, le réseau LeNet5 n'est pas complet");
}
}